Skip to main content

Advertisement

Log in

Matrix metalloproteinase inhibition protects CyPD knockout mice independently of RISK/mPTP signalling: a parallel pathway to protection

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

The mitochondrial permeability transition pore (mPTP) is widely accepted as an end-effector mechanism of conditioning protection against injurious ischaemia/reperfusion. However, death can be initiated in cells without pre-requisite mPTP opening, implicating alternate targets for ischaemia/reperfusion injury amelioration. Matrix metalloproteinases (MMP) are known to activate extrinsic apoptotic cascades and therefore we hypothesised that MMP activity represents an mPTP-independent target for augmented attenuation of ischaemia/reperfusion injury. In ex vivo and in vivo mouse hearts, we investigated whether the MMP inhibitor, ilomastat (0.25 μmol/l), administered upon reperfusion could engender protection in the absence of cyclophilin-D (CyPD), a modulator of mPTP opening, against injurious ischaemia/reperfusion. Ilomastat attenuated infarct size in wild-type (WT) animals [37 ± 2.8 to 22 ± 4.3 %, equivalent to ischaemic postconditioning (iPostC), used as positive control, 27 ± 2.1 %, p < 0.05]. Control CyPD knockout (KO) hearts had smaller infarcts than control WT (28 ± 4.2 %) and iPostC failed to confer additional protection, yet ilomastat significantly attenuated infarct size in KO hearts (11 ± 3.0 %, p < 0.001), and similar protection was also seen in isolated cardiomyocytes. Moreover, ilomastat, unlike the cyclophilin inhibitor cyclosporine-A, had no impact upon reactive oxygen species-mediated mPTP opening. While MMP inhibition was associated with increased Akt and ERK phosphorylation, neither Wortmannin nor PD98059 abrogated ilomastat-mediated protection. We demonstrate that MMP inhibition is cardioprotective, independent of Akt/ERK/CyPD/mPTP activity and is additive to the protection observed following inhibition of mPTP opening, indicative of a parallel pathway to protection in ischaemic/reperfused heart that may have clinical applicability in attenuating injury in acute coronary syndromes and deserve further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ali MA, Cho WJ, Hudson B, Kassiri Z, Granzier H, Schulz R (2010) Titin is a target of matrix metalloproteinase-2: implications in myocardial ischemia/reperfusion injury. Circulation 122:2039–2047. doi:10.1161/CIRCULATIONAHA.109.930222

    Article  PubMed  CAS  Google Scholar 

  2. Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD (2007) Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 9:550–555. doi:10.1038/ncb1575

    Article  PubMed  CAS  Google Scholar 

  3. Basso E, Fante L, Fowlkes J, Petronilli V, Forte MA, Bernardi P (2005) Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D. J Biol Chem 280:18558–18561. doi:10.1074/jbc.C500089200

    Article  PubMed  CAS  Google Scholar 

  4. Bell RM, Clark JE, Hearse DJ, Shattock MJ (2007) Reperfusion kinase phosphorylation is essential but not sufficient in the mediation of pharmacological preconditioning: characterisation in the bi-phasic profile of early and late protection. Cardiovasc Res 73:153–163. doi:10.1016/j.cardiores.2006.10.013

    Article  PubMed  CAS  Google Scholar 

  5. Bell RM, Mocanu MM, Yellon DM (2011) Retrograde heart perfusion: the Langendorff technique of isolated heart perfusion. J Mol Cell Cardiol 50:940–950. doi:10.1016/j.yjmcc.2011.02.018

    Article  PubMed  CAS  Google Scholar 

  6. Bell RM, Yellon DM (2011) There is more to life than revascularization: therapeutic targeting of myocardial ischemia/reperfusion injury. Cardiovasc Ther 29:e67–79. doi:10.1111/j.1755-5922.2010.00190.x

    Article  PubMed  Google Scholar 

  7. Bencsik P, Kupai K, Giricz Z, Gorbe A, Pipis J, Murlasits Z, Kocsis GF, Varga-Orvos Z, Puskas LG, Csonka C, Csont T, Ferdinandy P (2010) Role of iNOS and peroxynitrite-matrix metalloproteinase-2 signaling in myocardial late preconditioning in rats. Am J Physiol Heart Circ Physiol 299:H512–518. doi:10.1152/ajpheart.00052.2010

    Article  PubMed  CAS  Google Scholar 

  8. Boengler K, Heusch G, Schulz R (2011) Mitochondria in postconditioning. Antioxid Redox Signal 14:863–880. doi:10.1089/ars.2010.3309

    Article  PubMed  CAS  Google Scholar 

  9. Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341(Pt 2):233–249

    Article  PubMed  CAS  Google Scholar 

  10. Danielsen CC, Wiggers H, Andersen HR (1998) Increased amounts of collagenase and gelatinase in porcine myocardium following ischemia and reperfusion. J Mol Cell Cardiol 30:1431–1442

    Article  PubMed  CAS  Google Scholar 

  11. Di Lisa F, Canton M, Carpi A, Kaludercic N, Menabo R, Menazza S, Semenzato M (2011) Mitochondrial injury and protection in ischemic pre- and postconditioning. Antioxid Redox Signal 14:881–891. doi:10.1089/ars.2010.3375

    Article  PubMed  Google Scholar 

  12. Dobaczewski M, Gonzalez-Quesada C, Frangogiannis NG (2010) The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J Mol Cell Cardiol 48:504–511. doi:10.1016/j.yjmcc.2009.07.015

    Article  PubMed  CAS  Google Scholar 

  13. Duarte S, Hamada T, Kuriyama N, Busuttil RW, Coito AJ (2012) TIMP-1 deficiency leads to lethal partial hepatic ischemia and reperfusion injury. Hepatology 56:1074–1085. doi:10.1002/hep.25710

    Article  PubMed  CAS  Google Scholar 

  14. Etoh T, Joffs C, Deschamps AM, Davis J, Dowdy K, Hendrick J, Baicu S, Mukherjee R, Manhaini M, Spinale FG (2001) Myocardial and interstitial matrix metalloproteinase activity after acute myocardial infarction in pigs. Am J Physiol Heart Circ Physiol 281:H987–994

    PubMed  CAS  Google Scholar 

  15. Gao CQ, Sawicki G, Suarez-Pinzon WL, Csont T, Wozniak M, Ferdinandy P, Schulz R (2003) Matrix metalloproteinase-2 mediates cytokine-induced myocardial contractile dysfunction. Cardiovasc Res 57:426–433

    Article  PubMed  CAS  Google Scholar 

  16. Giricz Z, Lalu MM, Csonka C, Bencsik P, Schulz R, Ferdinandy P (2006) Hyperlipidemia attenuates the infarct size-limiting effect of ischemic preconditioning: role of matrix metalloproteinase-2 inhibition. J Pharmacol Exp Ther 316:154–161. doi:10.1124/jpet.105.091140

    Article  PubMed  CAS  Google Scholar 

  17. Gomez L, Paillard M, Thibault H, Derumeaux G, Ovize M (2008) Inhibition of GSK3beta by postconditioning is required to prevent opening of the mitochondrial permeability transition pore during reperfusion. Circulation 117:2761–2768. doi:10.1161/CIRCULATIONAHA.107.755066

    Article  PubMed  CAS  Google Scholar 

  18. Griffin MO, Jinno M, Miles LA, Villarreal FJ (2005) Reduction of myocardial infarct size by doxycycline: a role for plasmin inhibition. Mol Cell Biochem 270:1–11

    Article  PubMed  CAS  Google Scholar 

  19. Grobelny D, Poncz L, Galardy RE (1992) Inhibition of human skin fibroblast collagenase, thermolysin, and Pseudomonas aeruginosa elastase by peptide hydroxamic acids. Biochemistry 31:7152–7154

    Article  PubMed  CAS  Google Scholar 

  20. Guo Y, Flaherty MP, Wu WJ, Tan W, Zhu X, Li Q, Bolli R (2012) Genetic background, gender, age, body temperature, and arterial blood pH have a major impact on myocardial infarct size in the mouse and need to be carefully measured and/or taken into account: results of a comprehensive analysis of determinants of infarct size in 1,074 mice. Basic Res Cardiol 107:288. doi:10.1007/s00395-012-0288-y

    Article  PubMed  Google Scholar 

  21. Halestrap AP, Clarke SJ, Javadov SA (2004) Mitochondrial permeability transition pore opening during myocardial reperfusion–a target for cardioprotection. Cardiovasc Res 61:372–385. doi:10.1016/S0008-6363(03)00533-9

    Article  PubMed  CAS  Google Scholar 

  22. Hausenloy DJ, Ong SB, Yellon DM (2009) The mitochondrial permeability transition pore as a target for preconditioning and postconditioning. Basic Res Cardiol 104:189–202. doi:10.1007/s00395-009-0010-x

    Article  PubMed  CAS  Google Scholar 

  23. Heinzel FR, Luo Y, Li X, Boengler K, Buechert A, Garcia-Dorado D, Di Lisa F, Schulz R, Heusch G (2005) Impairment of diazoxide-induced formation of reactive oxygen species and loss of cardioprotection in connexin 43 deficient mice. Circ Res 97:583–586. doi:10.1161/01.RES.0000181171.65293.65

    Article  PubMed  CAS  Google Scholar 

  24. Heusch G (2013) Cardioprotection: chances and challenges of its translation to the clinic. Lancet 381:166–175. doi:10.1016/S0140-6736(12)60916-7

    Article  PubMed  Google Scholar 

  25. Heusch G, Boengler K, Schulz R (2008) Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation 118:1915–1919. doi:10.1161/CIRCULATIONAHA.108.805242

    Article  PubMed  Google Scholar 

  26. Heusch G, Boengler K, Schulz R (2010) Inhibition of mitochondrial permeability transition pore opening: the Holy Grail of cardioprotection. Basic Res Cardiol 105:151–154. doi:10.1007/s00395-009-0080-9

    Article  PubMed  Google Scholar 

  27. Hill JW, Poddar R, Thompson JF, Rosenberg GA, Yang Y (2012) Intranuclear matrix metalloproteinases promote DNA damage and apoptosis induced by oxygen-glucose deprivation in neurons. Neuroscience 220:277–290. doi:10.1016/j.neuroscience.2012.06.019

    Article  PubMed  CAS  Google Scholar 

  28. Hirohata S, Kusachi S, Murakami M, Murakami T, Sano I, Watanabe T, Komatsubara I, Kondo J, Tsuji T (1997) Time dependent alterations of serum matrix metalloproteinase-1 and metalloproteinase-1 tissue inhibitor after successful reperfusion of acute myocardial infarction. Heart 78:278–284

    PubMed  CAS  Google Scholar 

  29. Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW, Ziman BD, Wang S, Ytrehus K, Antos CL, Olson EN, Sollott SJ (2004) Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest 113:1535–1549. doi:10.1172/JCI19906

    PubMed  CAS  Google Scholar 

  30. Kandasamy AD, Schulz R (2009) Glycogen synthase kinase-3beta is activated by matrix metalloproteinase-2 mediated proteolysis in cardiomyoblasts. Cardiovasc Res 83:698–706. doi:10.1093/cvr/cvp175

    Article  PubMed  CAS  Google Scholar 

  31. Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cai J, Jones DP, MacGregor GR, Wallace DC (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427:461–465. doi:10.1038/nature02229

    Article  PubMed  CAS  Google Scholar 

  32. Krieg T, Cui L, Qin Q, Cohen MV, Downey JM (2004) Mitochondrial ROS generation following acetylcholine-induced EGF receptor transactivation requires metalloproteinase cleavage of proHB-EGF. J Mol Cell Cardiol 36:435–443

    Article  PubMed  CAS  Google Scholar 

  33. Lalu MM, Csonka C, Giricz Z, Csont T, Schulz R, Ferdinandy P (2002) Preconditioning decreases ischemia/reperfusion-induced release and activation of matrix metalloproteinase-2. Biochem Biophys Res Commun 296:937–941

    Article  PubMed  CAS  Google Scholar 

  34. Lalu MM, Pasini E, Schulze CJ, Ferrari-Vivaldi M, Ferrari-Vivaldi G, Bachetti T, Schulz R (2005) Ischaemia–reperfusion injury activates matrix metalloproteinases in the human heart. Eur Heart J 26:27–35

    Article  PubMed  CAS  Google Scholar 

  35. Ledour G, Moroy G, Rouffet M, Bourguet E, Guillaume D, Decarme M, Elmourabit H, Auge F, Alix AJ, Laronze JY, Bellon G, Hornebeck W, Sapi J (2008) Introduction of the 4-(4-bromophenyl)benzenesulfonyl group to hydrazide analogs of Ilomastat leads to potent gelatinase B (MMP-9) inhibitors with improved selectivity. Bioorg Med Chem 16:8745–8759. doi:10.1016/j.bmc.2008.07.041

    Article  PubMed  CAS  Google Scholar 

  36. Lee SR, Lo EH (2004) Induction of caspase-mediated cell death by matrix metalloproteinases in cerebral endothelial cells after hypoxia-reoxygenation. J Cereb Blood Flow Metab 24:720–727. doi:10.1097/01.WCB.0000122747.72175.47

    Article  PubMed  CAS  Google Scholar 

  37. Lim SY, Davidson SM, Hausenloy DJ, Yellon DM (2007) Preconditioning and postconditioning: the essential role of the mitochondrial permeability transition pore. Cardiovasc Res 75:530–535. doi:10.1016/j.cardiores.2007.04.022

    Article  PubMed  CAS  Google Scholar 

  38. Lovett DH, Mahimkar R, Raffai RL, Cape L, Maklashina E, Cecchini G, Karliner JS (2012) A novel intracellular isoform of matrix metalloproteinase-2 induced by oxidative stress activates innate immunity. PLoS ONE 7:e34177. doi:10.1371/journal.pone.0034177

    Article  PubMed  CAS  Google Scholar 

  39. Ludman AJ, Yellon DM, Hausenloy DJ (2010) Cardiac preconditioning for ischaemia: lost in translation. Dis Model Mech 3:35–38. doi:10.1242/dmm.003855

    Article  PubMed  Google Scholar 

  40. Maitra SR, Shapiro MJ, Bhaduri S, El-Maghrabi MR (2005) Effect of chemically modified tetracycline on transforming growth factor-beta1 and caspase-3 activation in liver of septic rats. Crit Care Med 33:1577–1581

    Article  PubMed  CAS  Google Scholar 

  41. Menon B, Johnson JN, Ross RS, Singh M, Singh K (2007) Glycogen synthase kinase-3beta plays a pro-apoptotic role in beta-adrenergic receptor-stimulated apoptosis in adult rat ventricular myocytes: role of beta1 integrins. J Mol Cell Cardiol 42:653–661. doi:10.1016/j.yjmcc.2006.12.011

    Article  PubMed  CAS  Google Scholar 

  42. Methner C, Donat U, Felix SB, Krieg T (2009) Cardioprotection of bradykinin at reperfusion involves transactivation of the epidermal growth factor receptor via matrix metalloproteinase-8. Acta Physiol (Oxf) 197:265–271. doi:10.1111/j.1748-1716.2009.02018.x

    Article  CAS  Google Scholar 

  43. Mughal W, Dhingra R, Kirshenbaum LA (2012) Striking a balance: autophagy, apoptosis, and necrosis in a normal and failing heart. Curr Hypertens Rep 14:540–547. doi:10.1007/s11906-012-0304-5

    Article  PubMed  CAS  Google Scholar 

  44. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136

    Article  PubMed  CAS  Google Scholar 

  45. Nishino Y, Webb IG, Davidson SM, Ahmed AI, Clark JE, Jacquet S, Shah AM, Miura T, Yellon DM, Avkiran M, Marber MS (2008) Glycogen synthase kinase-3 inactivation is not required for ischemic preconditioning or postconditioning in the mouse. Circ Res 103:307–314. doi:10.1161/CIRCRESAHA.107.169953

    Article  PubMed  CAS  Google Scholar 

  46. Piot C, Croisille P, Staat P, Thibault H, Rioufol G, Mewton N, Elbelghiti R, Cung TT, Bonnefoy E, Angoulvant D, Macia C, Raczka F, Sportouch C, Gahide G, Finet G, Andre-Fouet X, Revel D, Kirkorian G, Monassier JP, Derumeaux G, Ovize M (2008) Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med 359:473–481. doi:10.1056/NEJMoa071142

    Article  PubMed  CAS  Google Scholar 

  47. Sawicki G, Leon H, Sawicka J, Sariahmetoglu M, Schulze CJ, Scott PG, Szczesna-Cordary D, Schulz R (2005) Degradation of myosin light chain in isolated rat hearts subjected to ischemia–reperfusion injury: a new intracellular target for matrix metalloproteinase-2. Circulation 112:544–552. doi:10.1161/CIRCULATIONAHA.104.531616

    Article  PubMed  CAS  Google Scholar 

  48. Schulze CJ, Wang W, Suarez-Pinzon WL, Sawicka J, Sawicki G, Schulz R (2003) Imbalance between tissue inhibitor of metalloproteinase-4 and matrix metalloproteinases during acute myocardial [correction of myoctardial] ischemia–reperfusion injury. Circulation 107:2487–2492

    Article  PubMed  CAS  Google Scholar 

  49. Schwartz Longacre L, Kloner RA, Arai AE, Baines CP, Bolli R, Braunwald E, Downey J, Gibbons RJ, Gottlieb RA, Heusch G, Jennings RB, Lefer DJ, Mentzer RM, Murphy E, Ovize M, Ping P, Przyklenk K, Sack MN, Vander Heide RS, Vinten-Johansen J, Yellon DM (2011) New horizons in cardioprotection: recommendations from the 2010 National Heart, Lung, and Blood Institute Workshop. Circulation 124:1172–1179. doi:10.1161/CIRCULATIONAHA.111.032698

    Article  PubMed  Google Scholar 

  50. Sharma V, Bell RM, Yellon DM (2012) Targeting reperfusion injury in acute myocardial infarction: a review of reperfusion injury pharmacotherapy. Expert Opin Pharmacother 13:1153–1175. doi:10.1517/14656566.2012.685163

    Article  PubMed  CAS  Google Scholar 

  51. Skyschally A, van Caster P, Boengler K, Gres P, Musiolik J, Schilawa D, Schulz R, Heusch G (2009) Ischemic postconditioning in pigs: no causal role for RISK activation. Circ Res 104:15–18. doi:10.1161/CIRCRESAHA.108.186429

    Article  PubMed  CAS  Google Scholar 

  52. Smith CC, Lim SY, Wynne AM, Sivaraman V, Davidson SM, Mocanu MM, Hausenloy DJ, Yellon DM (2011) Failure of the adipocytokine, resistin, to protect the heart from ischemia–reperfusion injury. J Cardiovasc Pharmacol Ther 16:63–71. doi:10.1177/1074248410382232

    Article  PubMed  CAS  Google Scholar 

  53. Sung MM, Schulz CG, Wang W, Sawicki G, Bautista-Lopez NL, Schulz R (2007) Matrix metalloproteinase-2 degrades the cytoskeletal protein alpha-actinin in peroxynitrite mediated myocardial injury. J Mol Cell Cardiol 43:429–436. doi:10.1016/j.yjmcc.2007.07.055

    Article  PubMed  CAS  Google Scholar 

  54. Tsang A, Hausenloy DJ, Mocanu MM, Yellon DM (2004) Postconditioning: a form of “modified reperfusion” protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ Res 95:230–232. doi:10.1161/01.RES.0000138303.76488.fe

    Article  PubMed  CAS  Google Scholar 

  55. Viappiani S, Nicolescu AC, Holt A, Sawicki G, Crawford BD, Leon H, van Mulligen T, Schulz R (2009) Activation and modulation of 72 kDa matrix metalloproteinase-2 by peroxynitrite and glutathione. Biochem Pharmacol 77:826–834. doi:10.1016/j.bcp.2008.11.004

    Article  PubMed  CAS  Google Scholar 

  56. Vinten-Johansen J, Shi W (2011) Perconditioning and postconditioning: current knowledge, knowledge gaps, barriers to adoption, and future directions. J Cardiovasc Pharmacol Ther 16:260–266. doi:10.1177/1074248411415270

    Article  PubMed  Google Scholar 

  57. Wang GY, Bergman MR, Nguyen AP, Turcato S, Swigart PM, Rodrigo MC, Simpson PC, Karliner JS, Lovett DH, Baker AJ (2006) Cardiac transgenic matrix metalloproteinase-2 expression directly induces impaired contractility. Cardiovasc Res 69:688–696. doi:10.1016/j.cardiores.2005.08.023

    Article  PubMed  CAS  Google Scholar 

  58. Wang ZF, Wang NP, Harmouche S, Philip T, Pang XF, Bai F, Zhao ZQ (2013) Postconditioning promotes the cardiac repair through balancing collagen degradation and synthesis after myocardial infarction in rats. Basic Res Cardiol 108:318. doi:10.1007/s00395-012-0318-9

    Article  PubMed  Google Scholar 

  59. Williams-Pritchard G, Knight M, Hoe LS, Headrick JP, Peart JN (2011) Essential role of EGFR in cardioprotection and signaling responses to A1 adenosine receptors and ischemic preconditioning. Am J Physiol Heart Circ Physiol 300:H2161–2168. doi:10.1152/ajpheart.00639.2010

    Article  PubMed  CAS  Google Scholar 

  60. Yarbrough WM, Mukherjee R, Stroud RE, Meyer EC, Escobar GP, Sample JA, Hendrick JW, Mingoia JT, Spinale FG (2010) Caspase inhibition modulates left ventricular remodeling following myocardial infarction through cellular and extracellular mechanisms. J Cardiovasc Pharmacol 55:408–416. doi:10.1097/FJC.0b013e3181d4ca66

    Article  PubMed  CAS  Google Scholar 

  61. Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J (2003) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 285:H579–588

    PubMed  CAS  Google Scholar 

  62. Zhou HZ, Ma X, Gray MO, Zhu BQ, Nguyen AP, Baker AJ, Simonis U, Cecchini G, Lovett DH, Karliner JS (2007) Transgenic MMP-2 expression induces latent cardiac mitochondrial dysfunction. Biochem Biophys Res Commun 358:189–195

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the British Heart Foundation (Program Grant RG/08/015/26411) for on-going funding and support. This work was undertaken at University College London Hospital/University College London (UCLH/UCL) who received a proportion of funding from the Department of Health’s National Institute of Health Research (NIHR) Biomedical Research Centres funding scheme. Robert Bell is supported by National Institute for Health Research (NIHR), and work was undertaken with the support of the British Heart Foundation (RG/08/015/26411). Damian Bruce-Hickman was supported by a grant from the Wolfson Foundation. There is no industry sponsorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek M. Yellon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bell, R.M., Kunuthur, S.P., Hendry, C. et al. Matrix metalloproteinase inhibition protects CyPD knockout mice independently of RISK/mPTP signalling: a parallel pathway to protection. Basic Res Cardiol 108, 331 (2013). https://doi.org/10.1007/s00395-013-0331-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-013-0331-7

Keywords

Navigation