Skip to main content
Log in

Parkinson’s disease: lesions in dorsal horn layer I, involvement of parasympathetic and sympathetic pre- and postganglionic neurons

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Clinical signs frequently recognized in early phases of sporadic Parkinson’s disease (PD) may include autonomic dysfunctions and the experience of pain. Early disease-related lesions that may account for these symptoms are presently unknown or incompletely known. In this study, immunocytochemistry for α-synuclein was used to investigate the first relay stations of the pain system as well as parasympathetic and sympathetic pre- and postganglionic nerve cells in the lower brainstem, spinal cord, and coeliac ganglion in 100 μm polyethylene glycol embedded sections from six autopsy individuals, whose brains were staged for PD-associated synucleinopathy. Immunoreactive inclusions were found for the first time in spinal cord lamina I neurons. Lower portions of the spinal cord downwards of the fourth thoracic segment appeared to be predominantly affected, whereas the spinal trigeminal nucleus was virtually intact. Additional involvement was seen in parasympathetic preganglionic projection neurons of the vagal nerve, in sympathetic preganglionic neurons of the spinal cord, and in postganglionic neurons of the coeliac ganglion. The known interconnectivities between all of these components offer a possible explanation for their particular vulnerability. Lamina I neurons (pain system) directly project upon sympathetic relay centers, and these, in turn, exert influence on the parasympathetic regulation of the enteric nervous system. This constellation indicates that physical contacts between vulnerable regions play a key role in the pathogenesis of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abbott RD, Petrovitch H, White LR, Masaki KH, Tanner CM, Curb JD, Grandinetti A, Blanchette PL, Popper JS, Ross GW (2001) Frequency of bowel movements and the future risk of Parkinson’s disease. Neurology 57:456–462

    PubMed  CAS  Google Scholar 

  2. Adler CH (2005) Nonmotor complications in Parkinson’s disease. Mov Disord 20(Suppl 11):23–29

    Google Scholar 

  3. Ahlskog JE (2005) Challenging conventional wisdom: the etiologic role of dopamineoxidative stress in Parkinson’s disease. Mov Disord 20:271–282

    PubMed  Google Scholar 

  4. Awerbuch GI, Sandyk R (1994) Autonomic functions in the early stages of Parkinson’s disease. Int J Neurosci 74:9–16

    Article  PubMed  CAS  Google Scholar 

  5. Benarroch EE (2001) Pain–autonomic interactions: a selective review. Clin Auton Res 11:343–349

    PubMed  CAS  Google Scholar 

  6. Benarroch EE, Schmeichel AM, Low PA, Boeve BF, Sandroni P, Parisi J (2005) Involvement of medullary regions controlling sympathetic output in Lewy body disease. Brain 128:338–344

    PubMed  Google Scholar 

  7. Blessing WW (2004) Lower brain stem regulation of visceral, cardiovascular, and respiratory function. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, San Diego, pp 464–478

    Google Scholar 

  8. Bloch A, Probst A, Bissig H, Adams H, Tolnay M (2006) α-Synuclein pathology of the spinal and peripheral autonomic nervous system in neurologically unimpaired elderly subjects. Neuropathol Appl Neurobiol 12:284–295

    Google Scholar 

  9. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    PubMed  CAS  Google Scholar 

  10. Braak H, Braak E (1991) Demonstration of amyloid deposits and neurofibrillary changes in whole brain sections. Brain Pathol 1:213–216

    PubMed  CAS  Google Scholar 

  11. Braak H, Del Tredici K (2004) Poor and protracted myelination as a contributory factor to neurodegenerative disorders. Neurobiol Aging 25:19–23

    PubMed  CAS  Google Scholar 

  12. Braak H, Del Tredici K (2005) Preclinical and clinical stages of intracerebral inclusion body pathology in idiopathic Parkinson’s disease. In: Willow JM (ed) Parkinson’s disease: progress in research, Nova Science, Hauppauge, pp 1–49

    Google Scholar 

  13. Braak H, Del Tredici K, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    PubMed  Google Scholar 

  14. Braak H, Rüb U, Gai WP, Del Tredici K (2003) Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm 110:517–536

    PubMed  CAS  Google Scholar 

  15. Braak H, Rüb U, Del Tredici K (2003) Involvement of precerebellar nuclei in multiple system atrophy. Neurobiol Appl Neurobiol 29:60–76

    CAS  Google Scholar 

  16. Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318:121–134

    PubMed  Google Scholar 

  17. Braak H, de Vos RAI, Bohl J, Del Tredici K (2006) Gastric α-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett 396:67–72

    PubMed  CAS  Google Scholar 

  18. Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112:389–404

    PubMed  Google Scholar 

  19. Buzas B, Max MB (2004) Pain in Parkinson disease. Neurology 62:2156–2157

    PubMed  Google Scholar 

  20. Chaudhuri KR, Healy DG, Schapira AH (2006) Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol 5:235–245

    PubMed  Google Scholar 

  21. Craig AD (1992) Spinal and trigeminal lamina I input to the locus coeruleus anterogradely labeled with Phaseolus vulgaris leucoagglutinin (PHA-L) in the cat and the monkey. Brain Res 584:325–328

    PubMed  CAS  Google Scholar 

  22. Craig AD (1993) Propriospinal input to thoracolumbar sympathetic nuclei from cervical and lumbar lamina I neurons in the cat and monkey. J Comp Neurol 331:517–530

    PubMed  CAS  Google Scholar 

  23. Craig AD (1996) An ascending general homeostatic afferent pathway originating in lamina I. Prog Brain Res 107:225–242

    PubMed  CAS  Google Scholar 

  24. Craig AD (2003) Pain mechanisms: labeled lines versus convergence in central processing. Ann Rev Neurosci 26:1–30

    PubMed  CAS  Google Scholar 

  25. de Lau LM, Koudstaal PJ, Hofman A, Breteler MM (2006) Subjective complaints precede Parkinson’s disease: the Rotterdam study. Arch Neurol 63:362–365

    PubMed  Google Scholar 

  26. Del Tredici K, Braak H (2004) Idiopathic Parkinson’s disease: staging an α-synucleinopathy with a predictable pathoanatomy. In: Kahle P, Haass C (eds) Molecular mechanisms in Parkinson’s disease. Landes Bioscience, Georgetown, pp 1–32

    Google Scholar 

  27. Del Tredici K, Rüb U, de Vos RAI, Bohl JRE, Braak H (2002) Where does Parkinson disease pathology begin in the brain? J Neuropathol Exp Neurol 61:413–426

    PubMed  Google Scholar 

  28. Djaldetti R, Shifrin A, Rogowski Z, Sprecher E, Melamed E, Yarnitsky D (2004) Quantitative measurement of pain sensation in patients with Parkinson disease. Neurology 62:2171–2175

    PubMed  CAS  Google Scholar 

  29. Doty RL, Deems DA, Stellar S (1988) Olfactory dysfunction in parkinsonism: a general deficit unrelated to neurologic signs, disease stage, or disease duration. Neurology 38:1237–1244

    PubMed  CAS  Google Scholar 

  30. Doty RL, Stern MB, Pfeiffer C, Gollomp SM, Hurtig HI (1992) Bilateral olfactory dysfunction in early stage treated and untreated idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry 55:138–142

    PubMed  CAS  Google Scholar 

  31. Duda JE, Lee VMY, Trojanowski JQ (2000) Neuropathology of synuclein aggregates: new insights into mechanism of neurodegenerative diseases. J Neurosi Res 61:121–127

    CAS  Google Scholar 

  32. Foley P, Riederer P (1999) Pathogenesis and preclinical course of Parkinson’s disease. J Neural Transm Suppl 56:31–74

    PubMed  CAS  Google Scholar 

  33. Ford B (1998) Pain in Parkinson’s disease. Clin Neurosci 5:63–72

    PubMed  CAS  Google Scholar 

  34. Foreman RD, Blair RW (1988) Central organization of sympathetic cardiovascular response to pain. Ann Rev Physiol 50:607–622

    CAS  Google Scholar 

  35. Forno LS (1969) Concentric hyaline intraneuronal inclusions of Lewy body type in the brain of elderly persons (50 incidental cases): relationship to parkinsonism. J Am Geriatr Soc 17:557–575

    PubMed  CAS  Google Scholar 

  36. Forno LS (1996) Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 55:259–272

    PubMed  CAS  Google Scholar 

  37. Fürst S (1999) Transmitters involved in antinociception in the spinal cord. Brain Res Bull 48:129–141

    PubMed  Google Scholar 

  38. Gelb DJ, Oliver E, Gilman S (1999) Diagnostic criteria for Parkinson’s disease. Arch Neurol 56:33–39

    PubMed  CAS  Google Scholar 

  39. Gibb WR, Lees AJ (1988) The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry 51:745–752

    PubMed  CAS  Google Scholar 

  40. Gibb WRG, Lees AJ (1989) The significance of the Lewy body in the diagnosis of idiopathic Parkinson’s disease. Neuropathol Appl Neurobiol 15:27–44

    PubMed  CAS  Google Scholar 

  41. Goetz CG, Tanner CM, Levy M, Wilson RS, Garron DC (1986) Pain in Parkinson’s disease. Mov Disord 1:45–49

    PubMed  CAS  Google Scholar 

  42. Goetze O, Wieczorek J, Mueller T, Przuntek H, Schmidt WE, Woitalla D (2005) Impaired gastric emptying of a solid test meal in patients with Parkinson’s disease using 13C-sodium octanoate breadth test. Neurosci Lett 375:170–173

    PubMed  CAS  Google Scholar 

  43. Golbe LI (1999) Alpha synuclein and Parkinson’s disease. Mov Disord 14:6–9

    PubMed  CAS  Google Scholar 

  44. Goldstein DS (2006) Orthostatic hypotension as an early finding in Parkinson’s disease. Clin Auton Res 16:46–54

    PubMed  Google Scholar 

  45. Gonera EG, van’t Hof M, Bergen HJ, van Weel C, Horstink MW (1997) Symptoms and duration of the prodromal phase in Parkinson’s disease. Mov Disord 12:871–876

    PubMed  CAS  Google Scholar 

  46. Guyenet PG, Koshiya N, Huangfu D, Baraban SC, Stornetta RL, Li YW (1996) Role of medulla oblongata in generation of sympathetic and vagal outflows. Prog Brain Res 107:127–144

    PubMed  CAS  Google Scholar 

  47. Halliday G (2004) Substantia nigra and locus coeruleus. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn, Elsevier, San Diego, pp 449–463

    Google Scholar 

  48. Hawkes CH, Shephard BC, Daniel SE (1997) Olfactory dysfunction in Parkinson’s disease. J Neurol Neurosurg Psychiatry 62:436–446

    PubMed  CAS  Google Scholar 

  49. Hawkes CH, Shephard BC, Daniel SE (1999) Is Parkinson’s disease a primary olfactory disorder? Q J Med 92:473–480

    CAS  Google Scholar 

  50. Hilz MJ, Axelrod FB, Braeske K, Stemper B (2002) Cold pressor test demonstrates residual sympathetic cardiovascular activation in familial dysautonomia. J Neurol Sci 196:81–89

    PubMed  CAS  Google Scholar 

  51. Hopkins DA, Bieger D, de Vente J, Steinbusch HWM (1996) Vagal efferent projections: viscerotopy, neurochemistry and effects of vagotomy. Progr Brain Res 107:79–96

    CAS  Google Scholar 

  52. Huang XF, Törk I, Paxinos G (1993) Dorsal motor nucleus of the vagus nerve: a cyto- and chemoarchitectonic study in the human. J Comp Neurol 330:158–182

    PubMed  CAS  Google Scholar 

  53. Huang XF, Paxinos G (1995) Human intermediate reticular zone: a cyto- and chemoarchitectonic study. J Comp Neurol 360:571–588

    PubMed  CAS  Google Scholar 

  54. Iwanaga K, Wakabayashi K, Yoshimoto M, Tomita I, Satoh H, Takashima H, Satoh A, Seto M, Tsujihata M, Takahashi H (1999) Lewy body-type degeneration in cardiac plexus in Parkinson’s and incidental Lewy body diseases. Neurology 52:1269–1271

    PubMed  CAS  Google Scholar 

  55. Jänig W (1996) Spinal cord reflex organization of sympathetic systems. Progr Brain Res 107:43–77

    Google Scholar 

  56. Jager W, den Hartog WA, Bethlem J (1960) The distribution of Lewy bodies in the central and autonomic nervous system in idiopathic paralysis agitans. J Neurol Neurosurg Psychiat 23:283–290

    Google Scholar 

  57. Jellinger K (1991) Pathology of Parkinson’s disease. Changes other than the nigrostriatal pathway. Mol Chem Neuropathol 14:153–197

    Article  PubMed  CAS  Google Scholar 

  58. Jellinger KA (2003) Alpha-synuclein pathology in Parkinson’s and Alzheimer’s disease brain: incidence and topographic distribution—a pilot study. Acta Neuropathol 106:191–201

    PubMed  Google Scholar 

  59. Jellinger KA (2004) Lewy body-related α-syncleinopathy in the aged human brain. J Neural Transm 111:1219–1235

    PubMed  CAS  Google Scholar 

  60. Jenner P (1993) Presymptomatic detection of Parkinson’s disease. J Neural Transm Suppl 40:23–36

    PubMed  CAS  Google Scholar 

  61. Jensen PH, Gai WP (2001) Alpha-synuclein. Axonal transport, ligand interaction, and neurodegeneration. In: Tolnay M, Probst A (eds) Neuropathology and genetics of dementia. Kluwer/Plenum, New York, pp 129–134

    Google Scholar 

  62. Jost WH (2003) Autonomic dysfunctions in idiopathic Parkinson’s disease. J Neurol 250(Suppl 1):28–30

    Google Scholar 

  63. Kaufmann H, Nahm K, Purohit D, Wolfe D (2004) Autonomic failure as the initial manifestation of Parkinson’s disease and dementia with Lewy bodies. Neurology 63:1093–1095

    PubMed  Google Scholar 

  64. Klos KJ, Ahlskog JE, Josephs KA, Apaydin H, Parisi JE, Boeve BF, DeLucia MW, Dickson DW (2006) α-Synuclein pathology in the spinal cord of neurologically asymptomatic aged individuals. Neurology 66:1100–1102

    PubMed  CAS  Google Scholar 

  65. Klosen P, Maessen X, van den Bosch de Aguilar P (1993) PEG embedding for immunocytochemistry: application to the analysis of immunoreactivity loss during histological processing. J Histochem Cytochem 41:455–463

    PubMed  CAS  Google Scholar 

  66. Koller WC, Montgomery EB (1997) Issues in the early diagnosis of Parkinson’s disease. Neurology 49(Suppl 1):10–25

    Google Scholar 

  67. Koller WC, Langston JW, Hubble JP, Irwin I, Zack M, Golbe L, Forno L, Ellenberg J, Kurland L, Ruttenber AJ (1991) Does a long preclinical period occur in Parkinson’s disease? Neurology 41(Suppl 2):8–13

    PubMed  CAS  Google Scholar 

  68. Korczyn AD (1990) Autonomic nervous system disturbances in Parkinson’s disease. Adv Neurol 53:463–468

    PubMed  CAS  Google Scholar 

  69. Kuusisto E, Parkkinen L, Alafuzoff I (2003) Morphogenesis of Lewy bodies: dissimilar incorporation of α-synuclein, ubiquitin, and p62. J Neuropathol Exp Neurol 62:1241–1253

    PubMed  CAS  Google Scholar 

  70. Lang AE, Obeso JA (2004) Challenges in Parkinson’s disease: restoration of the nigrostriatal dopamine system is not enough. Lancet Neurol 3:309–316

    PubMed  Google Scholar 

  71. Langston JW (2006) The Parkinson’s complex: Parkinsonism is just the tip of the iceberg. Ann Neurol 59:591–596

    PubMed  Google Scholar 

  72. Larner AJ, Mathias CJ, Rossor MN (2000) Autonomic failure preceding dementia with Lewy bodies. J Neurol 247:229–231

    PubMed  CAS  Google Scholar 

  73. Lee PH, Yeo SH, Kim HJ, Youm HY (2006) Correlation between cardiac 123I MIBG and odor identification in patients with Parkinson’s disease and multiple system atrophy. Mov Disord 21:1975–1977

    PubMed  Google Scholar 

  74. Light AR (1988) Normal anatomy and physiology of the spinal cord dorsal horn. Appl Neurophysiol 51:78–88

    PubMed  CAS  Google Scholar 

  75. Litvan I, Bhatia KP, Burn DJ, Goetz CG, Lang AE, McKeith I, Quinn N, Sethi KP, Shults C, Wenning GK (2003) SIC Task force appraisal of clinical diagnostic criteria for Parkinsonian disorders. Mov Disord 18:467–486

    PubMed  Google Scholar 

  76. Loewy AD (1990) Central autonomic pathways. In: Loewy AD, Spyer KM (eds) Central regulation of autonomic functions. Oxford University Press, New York, pp 88–103

    Google Scholar 

  77. Lowe J (1994) Lewy bodies. In: Calne DP (ed) Neurodegenerative diseases. Saunders, Philadelphia, pp 51–69

    Google Scholar 

  78. Magerkurth C, Schnitzer R, Braune S (2005) Symptoms of autonomic failure in Parkinson’s disease: prevalence and impact on daily life. Clin Auton Res 15:76–82

    PubMed  Google Scholar 

  79. Martignoni E, Pacchetti C, Godi L, Miceli G, Nappi G (1995) Autonomic disorders in Parkinson’s disease. J Neural Transm 45(Suppl):11–19

    CAS  Google Scholar 

  80. McHugh JM, McHugh WB (2000) Pain: neuroanatomy, chemical mediators, and clinical implications. AACN Clin Issues 2:168–178

    Google Scholar 

  81. Micieli G, Tosi P, Marcheselli S, Cavallini A (2003) Autonomic dysfunction in Parkinson’s disease. Neurol Sci 24:32–34

    Google Scholar 

  82. Mikolaenko I, Pletnikova O, Kawas CH, O’Brien R, Resnick SM, Crain B, Troncosco JC (2005) Alpha-synuclein lesions in normal aging, Parkinson disease, and Alzheimer disease: evidence from the Baltimore Longitudinal Study of Aging (BLSA). J Neuropathol Exp Neurol 64:156–162

    PubMed  CAS  Google Scholar 

  83. Neumann M, Müller V, Kretzschmar HA, Haass C, Kahle PJ (2004) Regional distribution of proteinase-K-resistant α-synuclein correlates with Lewy body disease stage. Neuropathol Exp Neurol 63:1225–1235

    CAS  Google Scholar 

  84. Pfeiffer RF (2003) Gastrointestinal dysfunction in Parkinson’s disease. Lancet Neurol 2:107–116

    PubMed  Google Scholar 

  85. Ponsen MM, Stoffers D, Booij J, van Eck-Smit BL, Wolters EC, Berendse HW (2004) Idiopathic hyposmia as a preclinical sign of Parkinson’s disease. Ann Neurol 56:173–181

    PubMed  Google Scholar 

  86. Przuntek H, Müller T, Riederer P (2004) Diagnostic staging of Parkinson’s disease: conceptual aspects. J Neural Transm 111:201–216

    PubMed  CAS  Google Scholar 

  87. Quigley EM (1996) Gastrointestinal dysfunction in Parkinson’s disease. Semin Neurol 16:245–250

    PubMed  CAS  Google Scholar 

  88. Ross GW, Abbott RD, Petrovitch H, Tanner CM, Davis DG, Nelson J, Markesbery WR, Hardman J, Masaki K, Launer L, White LR (2006) Association of olfactory dysfunction with incidental Lewy bodies. Mov Disord 21(Suppl 13):2–6

    Google Scholar 

  89. Sage JI (2004) Pain in Parkinson’s disease. Curr Treat Options Neurol 6:191–200

    PubMed  Google Scholar 

  90. Scherder E, Wolters E, Polman C, Serfeant J, Swaab D (2005) Pain in Parkinson’s disease and multiple sclerosis: Its relation to the medial and lateral pain systems. Neurosci Biobehav Rev 29:1047–1056

    PubMed  Google Scholar 

  91. Siddiqui MF, Rast S, Lynn MJ, Auchus AP, Pfeiffer RF (2002) Autonomic dysfunction in Parkinson’s disease: a comprehensive symptom survey. Parkinsonism Rel Disord 8:277–284

    CAS  Google Scholar 

  92. Smithson KG, MacVicar BA, Hatton GI (1983) Polyethylene glycol embedding: a technique compatible with immunocytochemistry, enzyme histochemistry, histofluorescence and intracellular staining. J Neurosci Methods 7:27–41

    PubMed  CAS  Google Scholar 

  93. Soykan I, Lin Z, Bennet JP, McCallum RW (1999) Gastric myoelectrical activity in patients with Parkinson’s disease: evidence of a primary gastric abnormality. Digest Disease Sci 44:927–931

    CAS  Google Scholar 

  94. Spillantini MG, Schmidt ML, Lee VMY, Trojanowski JQ, Jakes R, Goedert M (1997) α-Synuclein in Lewy bodies. Nature 388:2045–2047

    Google Scholar 

  95. Strack AM, Sawyer WB, Hughes JH, Platt KB, Loewy AD (1989) A general pattern of CNS innervation of the sympathetic outflow demonstrated by transneuronal pseudorabies viral infections. Brain Res 491:156–162

    PubMed  CAS  Google Scholar 

  96. Strack AM, Sawyer WB, Platt KB, Loewy AD (1989) CNS cell groups regulating the sympathetic outflow to adrenal gland as revealed by transneuronal cell body labelling with pseudorabies virus. Brain Res 491:274–296

    PubMed  CAS  Google Scholar 

  97. Sun MK (1995) Central neural organization and control of sympathetic nervous system in mammals. Prog Neurobiol 47:157–233

    PubMed  CAS  Google Scholar 

  98. Takahashi H, Wakabayashi K (2001) The cellular pathology of Parkinson’s disease, Neuropathol 21:315–322

    CAS  Google Scholar 

  99. Takahashi H, Wakabayashi K (2005) Controversy: is Parkinson’s disease a single disease entity? Yes. Parkinsonism Rel Disord 11:31–37

    Google Scholar 

  100. Thal DR, Del Tredici K, Braak H (2004) Neurodegeneration in normal brain aging and disease. Sci Aging Knowl Environ 23:1–13

    Google Scholar 

  101. Tracey I (2005) Nociceptive processing in the human brain. Curr Opin Neurobiol 15:478–487

    PubMed  CAS  Google Scholar 

  102. Uchikado H, Lin WL, DeLucia MW, Dickson DW (2006) Alzheimer disease with amgydala Lewy bodies: a distinct form of alpha-synucleinopathy. J Neuropathol Exp Neurol 65:685–697

    PubMed  CAS  Google Scholar 

  103. Wakabayashi K, Takahashi H (1997) The intermediolateral nucleus and Clarke’s column in Parkinson’s disease. Acta Neuropathol 94:287–289

    PubMed  CAS  Google Scholar 

  104. Wakabayashi K, Takahashi H (1997) Neuropathology of autonomic nervous system in Parkinson’s disease. Eur Neurol 38(Suppl 2):2–7

    PubMed  Google Scholar 

  105. Wakabayashi K, Takahashi H, Takeda S, Ohama E, Ikuta F (1988) Parkinson’s disease: the presence of Lewy bodies in Auerbach’s and Meissner’s plexuses. Acta Neuropathol 76:217–221

    PubMed  CAS  Google Scholar 

  106. Wakabayashi K, Takahashi H, Ohama E, Ikuta F (1990) Parkinson’s disease: an immunohistochemical study of Lewy body-containing neurons in the enteric nervous system, Acta Neuropathol 79:581–583

    PubMed  CAS  Google Scholar 

  107. Wakabayashi K, Takahashi H, Ohama E, Takeda S, Ikuta F (1993) Lewy bodies in the visceral autonomic nervous system in Parkinson’s disease. Adv Neurol 60:609–612

    PubMed  CAS  Google Scholar 

  108. Waseem S, Gwinn-Hardy K (2001) Pain in Parkinson’s disease. Postgrad Med 110:1–5

    Article  Google Scholar 

  109. Willis WD (1985) The pain system: the neural basis of nociceptive transmission in the mammalian nervous system. In: Gildenberg PL (ed) Pain and headache. Karger, Basel

    Google Scholar 

  110. Willis WD, Westlund KN (1997) Neuroanatomy of the pain system and of the pathways that modulate pain. J Clin Neurophysiol 14:2–31

    PubMed  CAS  Google Scholar 

  111. Wolters EC, Braak H (2006) Parkinson’s disease: premotor clinico-pathological correlations. J Neural Transm 70(Suppl):309–319

    Article  Google Scholar 

  112. Wolters EC, Francot C, Bergmans P, Winogrodzka A, Booij J, Berendse HW, Stoof JC (2000) Preclinical (premotor) Parkinson’s disease. J Neurol 247(Suppl 2):103–109

    Google Scholar 

Download references

Acknowledgments

This work was funded by a grant (Br 317/17-3) from the Deutsche Forschungsgemeinschaft (DFG). The contributing authors have no existing or pending conflicts of interest. Autopsies were performed in compliance with the ethics committee guidelines of all three participating institutions. We thank Mr. Mohamed Bouzrou (laboratory technical assistance) and Ms. Inge Szász-Jacobi (graphics) for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Braak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braak, H., Sastre, M., Bohl, J.R.E. et al. Parkinson’s disease: lesions in dorsal horn layer I, involvement of parasympathetic and sympathetic pre- and postganglionic neurons. Acta Neuropathol 113, 421–429 (2007). https://doi.org/10.1007/s00401-007-0193-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-007-0193-x

Keywords

Navigation