Skip to main content
Log in

Neurochemical pattern of the complex innervation of neuroepithelial bodies in mouse lungs

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

As best characterized for rats, it is clear that pulmonary neuroepithelial bodies (NEBs) are contacted by a plethora of nerve fiber populations, suggesting that they represent an extensive group of multifunctional intraepithelial airway receptors. Because of the importance of genetically modified mice for functional studies, and the current lack of data, the main aim of the present study was to achieve a detailed analysis of the origin and neurochemical properties of nerve terminals associated with NEBs in mouse lungs. Antibodies against known selective markers for sensory and motor nerve terminals in rat lungs were used on lungs from control and vagotomized mice of two different strains, i.e., Swiss and C57-Bl6. NEB cells were visualized by antibodies against either the general neuroendocrine marker protein gene-product 9.5 (PGP9.5) or calcitonin gene-related peptide (CGRP). Thorough immunohistochemical examination of NEB cells showed that some of these NEB cells also exhibit calbindin D-28 k (CB) and vesicular acetylcholine transporter (VAChT) immunoreactivity (IR). Mouse pulmonary NEBs were found to receive intraepithelial nerve terminals of at least two different populations of myelinated vagal afferents: (1) Immunoreactive (ir) for vesicular glutamate transporters (VGLUTs) and CB; (2) expressing P2X2 and P2X3 ATP receptors. CGRP IR was seen in varicose vagal nerve fibers and in delicate non-vagal fibers, both in close proximity to NEBs. VAChT immunostaining showed very weak IR in the NEB-related intraepithelial vagal sensory nerve terminals. nNOS- or VIP-ir nerve terminals could be observed at the base of pulmonary NEBs. While a single NEB can be contacted by multiple nerve fiber populations, it was clear that none of the so far characterized nerve fiber populations contacts all pulmonary NEBs. The present study revealed that mouse lungs harbor several populations of nerve terminals that may selectively contact NEBs. Although at present the physiological significance of the innervation pattern of NEBs remains enigmatic, it is likely that NEBs are receptor–effector end-organs that may host complex and/or multiple functional properties in normal airways. The neurochemical information on the innervation of NEBs in mouse lungs gathered in the present study will be essential for the interpretation of upcoming functional data and for the study of transgenic mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  • Adriaensen D, Scheuermann DW (1993) Neuroendocrine cells and nerves of the lung. Anat Rec 236:70–85

    Article  PubMed  CAS  Google Scholar 

  • Adriaensen D, Timmermans J-P, Brouns I, Berthoud HR, Neuhuber WL, Scheuermann DW (1998) Pulmonary intraepithelial vagal nodose afferent nerve terminals are confined to neuroepithelial bodies: an anterograde tracing and confocal microscopy study in adult rats. Cell Tissue Res 293:395–405

    Article  PubMed  CAS  Google Scholar 

  • Adriaensen D, Brouns I, Van Genechten J, Timmermans J-P (2003) Functional morphology of pulmonary neuroepithelial bodies: extremely complex airway receptors. Anat Rec 270A:25–40

    Article  Google Scholar 

  • Adriaensen D, Brouns I, Pintelon I, De Proost I, Timmermans J-P (2006) Evidence for a role of neuroepithelial bodies as complex airway sensors: comparison with smooth muscle-associated airway receptors. J Appl Physiol 101:960–970

    Article  PubMed  CAS  Google Scholar 

  • Brouns I, Adriaensen D, Burnstock G, Timmermans J-P (2000) Intraepithelial vagal sensory nerve terminals in rat pulmonary neuroepithelial bodies express P2X3 receptors. Am J Respir Cell Mol Biol 23:52–61

    PubMed  CAS  Google Scholar 

  • Brouns I, Van Genechten J, Scheuermann DW, Timmermans J-P, Adriaensen D (2002a) Neuroepithelial bodies: a morphologic substrate for the link between neuronal nitric oxide and sensitivity to airway hypoxia? J Comp Neurol 449:343–354

    Article  PubMed  CAS  Google Scholar 

  • Brouns I, Van Nassauw L, Van Genechten J, Majewski M, Scheuermann DW, Timmermans J-P, Adriaensen D (2002b) Triple immunofluorescence staining method with antibodies raised in the same species to study the complex innervation pattern of intrapulmonary chemoreceptors. J Histochem Cytochem 50:575–582

    PubMed  CAS  Google Scholar 

  • Brouns I, Van Genechten J, Hayashi H, Gajda M, Gomi T, Burnstock G, Timmermans J-P, Adriaensen D (2003) Dual sensory innervation of pulmonary neuroepithelial bodies. Am J Respir Cell Mol Biol 28:275–285

    Article  PubMed  CAS  Google Scholar 

  • Brouns I, Pintelon I, Van Genechten J, De Proost I, Timmermans J-P, Adriaensen D (2004) Vesicular glutamate transporter 2 is expressed in different nerve fibre populations that selectively contact pulmonary neuroepithelial bodies. Histochem Cell Biol 121:1–12

    Article  PubMed  CAS  Google Scholar 

  • Brouns I, De Proost I, Pintelon I, Timmermans J-P, Adriaensen D (2006a) Sensory receptors in the airways: neurochemical coding of smooth muscle-associated airway receptors and pulmonary neuroepithelial body innervation. Auton Neurosci 126–127:307–319

    Article  PubMed  CAS  Google Scholar 

  • Brouns I, Pintelon I, De Proost I, Alewaters R, Timmermans J-P, Adriaensen D (2006b) Neurochemical characterisation of sensory receptors in airway smooth muscle: comparison with pulmonary neuroepithelial bodies. Histochem Cell Biol 125:351–367

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (2007) Physiology and pathophysiology of purinergic transmission. Physiol Rev 87:659–797

    Article  PubMed  CAS  Google Scholar 

  • Cadieux A, Springall DR, Mulderry PK, Rodrigo J, Ghatei MA, Terenghi G, Bloom SR, Polak JM (1986) Occurrence, distribution and ontogeny of CGRP immunoreactivity in the rat lower respiratory tract: effect of capsaicin treatment and surgical denervations. Neuroscience 19:605–627

    Article  PubMed  CAS  Google Scholar 

  • Castelucci P, Robbins HL, Furness JB (2003) P2X2 purine receptor immunoreactivity of intraganglionic laminar endings in the mouse gastrointestinal tract. Cell Tissue Res 312:167–174

    PubMed  CAS  Google Scholar 

  • Cutz E, Jackson A (1999) Neuroepithelial bodies as airway oxygen sensors. Respir Physiol 115:201–214

    Article  PubMed  CAS  Google Scholar 

  • Cutz E, Yeger H, Pan J (2007) Pulmonary neuroendocrine cell system in pediatric lung disease—recent advances. Pediatr Dev Pathol 10:419–435

    Article  PubMed  CAS  Google Scholar 

  • Dakhama A, Kanehiro A, Mäkelä MJ, Loader JE, Larsen GL, Gelfand EW (2002) Regulation of airway hyperresponsiveness by calcitonin gene-related peptide in allergen sensitised and challenged mice. Am J Respir Crit Care Med 165:1137–1144

    PubMed  Google Scholar 

  • De Proost I, Pintelon I, Brouns I, Timmermans J-P, Adriaensen D (2007) Selective visualisation of sensory receptors in the smooth muscle layer of ex vivo airway whole mounts by styryl pyridinium dyes. Cell Tissue Res 329:421–431

    Article  PubMed  CAS  Google Scholar 

  • De Proost I, Pintelon I, Brouns I, Kroese ABA, Riccardi D, Kemp PJ, Timmermans J-P, Adriaensen D (2008a) Functional live cell imaging of the pulmonary neuroepithelial body microenvironment. Am J Respir Cell Mol Biol 39:180–189

    Article  PubMed  CAS  Google Scholar 

  • De Proost I, Pintelon I, Wilkinson WJ, Goethals S, Brouns I, Van Nassauw L, Riccardi D, Timmermans J-P, Kemp PJ, Adriaensen D (2008b) ATP released from pulmonary neuroepithelial bodies activates Clara-like cells in the NEB microenvironment via P2Y2 receptors. FASEB J 22: 929.4 (Abstract)

  • Dinh QT, Groneberg DA, Peiser C, Joachim RA, Frossard N, Arck PC, Klapp BF, Fisher A (2005) Expression of substance P and nitric oxide synthase in vagal sensory neurons innervating the mouse airways. Regul Pept 126:189–194

    Article  PubMed  CAS  Google Scholar 

  • Gever JR, Cockayne DA, Dillon MP, Burnstock G, Ford APDW (2006) Pharmacology of P2X channels. Pflugers Arch Eur J Physiol 453:513–537

    Google Scholar 

  • Guembe L, Villaro AC (1999) Histochemical demonstration of neuronal nitric oxide synthase during development of mouse respiratory tract. Am.J.Respir.Cell Mol.Biol 20:342–351

    PubMed  CAS  Google Scholar 

  • Haxhiu MA, Kc P, Moore CT, Acquah SS, Wilson CG, Zaida SI, Massari VJ, Ferguson DG (2005) Brain stem excitatory and inhibitory signaling pathways regulating bronchoconstrictive responses. J Appl Physiol 98:1961–1982

    Article  PubMed  CAS  Google Scholar 

  • Hung K-S, Loosli CG (1974) Bronchiolar neuro-epithelial bodies in the neonatal mouse lungs. Am J Anat 140:191–200

    Article  PubMed  CAS  Google Scholar 

  • Hung K-S, Hertweck MS, Hardy JD, Loosli CG (1973) Ultrastructure of nerves and associated cells in bronchiolar epithelium of the mouse lung. J.Ultrastr.Res 43:426–437

    Article  CAS  Google Scholar 

  • Ichikawa H (2002) Innervation of the carotid body: immunohistochemical, denervation, and retrogade tracing studies. Microsc Res Tech 59:188–195

    Article  PubMed  CAS  Google Scholar 

  • Kraus T, Neuhuber WL, Raab M (2007) Distribution of vesicular glutamate transporter 1 (VGLUT1) in the mouse esophagus. Cell Tissue Res 329:205–219

    Article  PubMed  CAS  Google Scholar 

  • Lachamp P, Crest M, Kessler JP (2006) Vesicular glutamate transporters type 1 and 2 expression in axon terminals of the rat nucleus of the solitary tract. Neuroscience 137:73–81

    Article  PubMed  CAS  Google Scholar 

  • Lauweryns JM, Van Ranst L (1987) Calcitonin gene related peptide immunoreactivity in rat lung: light and electron microscopic study. Thorax 42:183–189

    Article  PubMed  CAS  Google Scholar 

  • Lauweryns JM, Van Ranst L (1988) Protein gene product 9.5 expression in the lungs of humans and other mammals. Immunocytochemical detection in neuroepithelial bodies, neuroendocrine cells and nerves. Neurosci Lett 85:311–316

    Article  PubMed  CAS  Google Scholar 

  • Lauweryns JM, Cokelaere M, Theunynck P (1972) Neuroepithelial bodies in the respiratory mucosa of various mammals. A light optical, histochemical and ultrastuctural investigation. Z Zellforsch Mikrosk Anat 135:569–592

    Article  PubMed  CAS  Google Scholar 

  • Lawrence AJ (1995) Neurotransmitter mechanisms of rat vagal afferent neurons. Clin Exp Pharmacol Physiol 22:869–873

    Article  PubMed  CAS  Google Scholar 

  • Linnoila RI (2006) Functional facets of the pulmonary neuroendocrine system. Lab Invest 86:425–444

    Article  PubMed  CAS  Google Scholar 

  • Llewellyn-Smith IJ, Costa M, Furness JB (1985) Light and electron microscopic immunocytochemistry of the same nerves from whole mount preparations. J Histochem Cytochem 33:857–866

    PubMed  CAS  Google Scholar 

  • Luts A, Uddman R, Absood A, Håkanson R, Sundler F (1991) Chemical coding of endocrine cells of the airways: presence of helodermin-like peptides. Cell Tissue Res 265:425–433

    Article  PubMed  CAS  Google Scholar 

  • Ogura T, Margolskee RF, Tallini YN, Shui B, Kotlikoff MI, Lin W (2007) Immuno-localization of vesicular acetylcholine transporter in mouse taste cells and adjacent nerve fibers: indication of acetylcholine release. Cell Tissue Res 330:17–28

    Article  PubMed  CAS  Google Scholar 

  • Negoescu A, Labat-Moleur F, Lorimier P, Lamarq L, Guillermet C, Chambaz E, Brambilla E (1994) F(ab) secondary antibodies: a general method for double immunolabeling with primary antisera from the same species. Efficiency control by chemiluminescence. J Histochem Cytochem 42:433–437

    PubMed  CAS  Google Scholar 

  • Pan J, Luk C, Kent G, Cutz E, Yeger H (2006) Pulmonary neuroendocrine cells, airway innervation, and smooth muscle are altered in Cftr null mice. Am J Respir Cell Mol.Biol 35:320–326

    Article  PubMed  CAS  Google Scholar 

  • Pintelon I, Brouns I, Van Genechten J, Scheuermann DW, Timmermans J-P, Adriaensen D (2003) Pulmonary expression of the vesicular acetylcholine transporter with special reference to neuroepithelial bodies. Auton Neurosci 106:47 (Abstract)

    Google Scholar 

  • Pintelon I, De Proost I, Brouns I, Van Herck H, Van Genechten J, Van Meir F, Timmermans J-P, Adriaensen D (2005) Selective visualisation of neuroepithelial bodies in vibratome slices of living lung by 4-Di–2-ASP in various animal species. Cell Tissue Res 321:21–33

    Article  PubMed  CAS  Google Scholar 

  • Raab M, Neuhuber WL (2003) Vesicular glutamate transporter 2 immunoreactivity in putative vagal mechanosensor terminals of mouse and rat esophagus: indication of a local effector function. Cell Tissue Res 312:141–148

    PubMed  CAS  Google Scholar 

  • Raab M, Neuhuber WL (2005) Number and distribution of intraganglionic laminar endings in the mouse esophagus as demonstrated with two different immunohistochemical markers. J Histochem Cytochem 53:1023–1031

    Article  PubMed  CAS  Google Scholar 

  • Raab M, Neuhuber WL (2007) Glutamatergic functions of primary afferent neurons with special emphasis on vagal afferents. Int Rev Cytol 256:223–275

    Article  PubMed  CAS  Google Scholar 

  • Scheuermann DW, Adriaensen D, Timmermans J-P, De Groodt-Lasseel MH (1992) Comparative histological overview of the chemical coding of the pulmonary neuroepithelial endocrine system in health and disease. Eur J Morphol 30:101–112

    PubMed  CAS  Google Scholar 

  • Shan J, Carbonara P, Karp N, Tulic M, Hamid Q, Eidelman DH (2007) Localization and distribution of NOS1 in murine airways. Nitric Oxide 17:25–32

    Article  PubMed  CAS  Google Scholar 

  • Shimosegawa T, Said SI (1991) Pulmonary calcitonin gene-related peptide immunoreactivity: nerve–endocrine cell interrelationships. Am J Respir Cell Mol Biol 4:126–134

    PubMed  CAS  Google Scholar 

  • Shirahata M, Balbir A, Otsubo T, Fitzgerald RS (2007) Role of acetylcholine in neurotransmission in the carotid body. Respir Physiol Neurobiol 157:93–105

    Article  PubMed  CAS  Google Scholar 

  • Song P, Sekhon HS, Jia Y, Keller JA, Blusztajn JK, Mark GP, Spindel ER (2003) Acetylcholine is synthesized by and act as an autocrine growth factor for small cell lung carcinoma. Cancer Res 63:214–221

    PubMed  CAS  Google Scholar 

  • Sorokin SP, Hoyt RF (1989) Neuroepithelial bodies and solitary small-granule cells. In: Massaro D (ed) Lung cell biology. Marcel Dekker, New York, pp 191–344

    Google Scholar 

  • Sorokin SP, Hoyt RF (1990) On the supposed function of neuroepithelial bodies in adult mammalian lungs. News Physiol Sci 5:89–95

    Google Scholar 

  • Springall DR, Cadieux A, Oliveira H, Su H, Rayston D, Polak JM (1987) Retrograde tracing shows that CGRP-immunoreactive nerves of rat trachea and lung originate from vagal and dorsal root ganglia. J Auton Nerv Syst 20:155–166

    Article  PubMed  CAS  Google Scholar 

  • Stahlman MT, Gray ME (1997) Immunogold EM localization of neurochemicals in human pulmonary neuroendocrine cells. Micros Res Tech 37:77–91

    Article  CAS  Google Scholar 

  • Takamori S (2006) VGLUTs: ‘Exciting’ times for glutamatergic research? Neurosci Res 55:343–351

    Article  PubMed  CAS  Google Scholar 

  • Thompson RJ, Doran JF, Jackson P, Dhillon AP, Rode J (1983) PGP 9.5—a new marker for vertebrate neurons and neuroendocrine cells. Brain Res 278:224–228

    Article  PubMed  CAS  Google Scholar 

  • Timmermans J-P, Adriaensen D (2008) Gastrointestinal mechanosensors: analysis of multiple stimuli may require complex sensors. Neurogastroenterol Mot 20:4–7

    Google Scholar 

  • Van Genechten J, Brouns I, Burnstock G, Timmermans J-P, Adriaensen D (2004) Quantification of neuroepithelial bodies and their innervation in Fawn-Hooded and Wistar rat lungs. Am J Respir Cell Mol Biol 30:20–30

    Article  PubMed  CAS  Google Scholar 

  • Van Lommel A, Lauweryns JM (1993) Neuroepithelial bodies in the Fawn Hooded rat lung: morphological and neuroanatomical evidence for a sensory innervation. J Anat 183:553–566

    PubMed  Google Scholar 

  • Van Lommel A, Lauweryns JM, Berthoud H-R (1998) Pulmonary neuroepithelial bodies are innervated by vagal afferent nerves: an investigation with in vivo anterograde Dil tracing and confocal microscopy. Anat Embryol 197:325–330

    Article  PubMed  Google Scholar 

  • Verástegui C, Oliveira AP, Fernández-Vivero J, Romero A, de Castro JM (1997) Calcitonin gene-related peptide immunoreactivity in adult mouse lung. Eur.J.Histochem 41:119–126

    PubMed  Google Scholar 

  • Wasano K (1977) Neuroepithelial bodies in the lung of rat and mouse. Arch Histol Jpn 40:207–219

    PubMed  Google Scholar 

  • Widdicombe JG (2001) Airway receptors. Respir Physiol 125:3–15

    Article  PubMed  CAS  Google Scholar 

  • Youngson C, Nurse C, Yeger H, Cutz E (1993) Oxygen sensing in airway chemoreceptors. Nature 365:153–155

    Article  PubMed  CAS  Google Scholar 

  • Zhong Y, Dunn PM, Bardini M, Ford APDW, Cockayne DA, Burnstock G (2001) Changes in P2X receptor responses of sensory neurons from P2X3-deficient mice. Eur J Neurosci 14:1784–1792

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the following research grants: Fund for Scientific Research-Flanders (G.0085.04 and G.0081.08 to D.A.), NOI-BOF 2003 and GOA-BOF 2007 (to D.A.), and KP-BOF 2006 (to I·B.) from the University of Antwerp. We are grateful to Prof. G. Burnstock (Royal Free & University College Medical School) for his invaluable input in the ATP receptor studies, and acknowledge J. Van Genechten for his help with the study of the nitrergic innervation of mouse NEBs. We thank R. Spillemaeckers, G. Svensson, F. Terloo, S. De Geyter and G. Vermeiren for technical assistance, J. Van Daele and D. De Rijck for help with microscopy, imaging and illustrations, D. Vindevogel for aid with the manuscript, and H. De Pauw and S. Kockelberg for secretarial help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Adriaensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brouns, I., Oztay, F., Pintelon, I. et al. Neurochemical pattern of the complex innervation of neuroepithelial bodies in mouse lungs. Histochem Cell Biol 131, 55–74 (2009). https://doi.org/10.1007/s00418-008-0495-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-008-0495-7

Keywords

Navigation