Skip to main content
Log in

Angiotensin-(1–7) stimulates water transport in rat inner medullary collecting duct: evidence for involvement of vasopressin V2 receptors

  • Renal Function, Body Fluids
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The peptide angiotensin-(1–7) [Ang-(1–7)] is known to enhance water transport in rat inner medullary collecting duct (IMCD). The aim of this study was to determine the mechanism of the Ang-(1–7) effect on osmotic water permeability (P f). P f was measured in the normal rat IMCD perfused in vitro in presence of agonists [Ang-(1–7), arginine vasopressin (AVP) and Ang-(3–8)], and antagonists of the angiotensin and the vasopressin cascade. Ang-(1–7), but not Ang-(3–8), increased P f significantly. The effect of Ang-(1–7) on P f was abolished by its selective antagonist, A-779, added before or after Ang-(1–7). Prostaglandin E2 and the protein kinase A inhibitor H8 also blocked the Ang-(1–7) effect. Blockade of vasopressin V1 receptors by antagonists did not change the Ang-(1–7) effect, but pre-treatment with a V2 antagonist abolished the effect of Ang-(1–7) on P f. Similarly, pre-treatment with A-779 inhibited AVP’s effect on P f. Forskolin-stimulated P f was blocked both by A-779 and by the V2 antagonist. Finally, Ang-(1–7) increased cAMP levels in fresh IMCD cell suspensions whilst the forskolin-stimulated cAMP synthesis was decreased by A-779 and the V2 antagonist. These data provide evidence that Ang-(1–7) interacts via its receptor with the AVP V2 system through a mechanism involving adenylate-cyclase activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6 A

Similar content being viewed by others

References

  1. Abdalla S, Lother H, Quitterer U (2000) AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration. Nature 407:94–98

    Google Scholar 

  2. Andreatta-Van Leyen S, Romero MF, Khosla MC, Douglas JG (1993) Modulation of phospholipase A2 activity and sodium transport by angiotensin-(1–7). Kidney Int 44:932–936

    PubMed  Google Scholar 

  3. Baltatu O, Bader M, Ganten D (1998) Angiotensin. In: Fink G (ed) Encyclopedia of stress. Academic Press, New York, pp 195–199

  4. Baracho NCV, Simões e Silva AC, Khosla MC, Santos RAS (1998) Effect of selective angiotensin antagonists on the antidiuresis produced by angiotensin-(1–7) in water-loaded rats. Braz J Med Biol Res 31:1221–1227

    CAS  PubMed  Google Scholar 

  5. Block CH, Santos RAS, Brosnihan KB, Ferrario CM (1998) Immunocytochemical localization of angiotensin (1–7) in the rat forebrain. Peptides 9:1395–1401

    Article  Google Scholar 

  6. Breyer MD, Ando Y (1994) Hormonal signaling and regulation of salt and water transport in the collecting duct. Annu Rev Physiol 56:711–739

    Google Scholar 

  7. Burg MB, Orloff J (1968) Control of fluid absorption in the renal proximal tubule. J Clin Invest 47:2016–2024

    CAS  PubMed  Google Scholar 

  8. Calka J, Block CH (1993) Angiotensin-(1–7) and nitric oxide synthase in the hypothalamo-neurohypophysial system. Brain Res Bull 30:677–685

    Article  CAS  PubMed  Google Scholar 

  9. Chappell MC, Diz DI, Yunis C, Ferrario CM (1998) Differential actions of angiotensin-(1–7) in the kidney. Kidney Int Suppl 68:S3–S6

    CAS  PubMed  Google Scholar 

  10. Chappell MC, Iyer SN, Diz DI, Ferrario CM (1998) Antihypertensive effects of angiotensin-(1–7). Braz J Med Biol Res 31:1205–1212

    CAS  PubMed  Google Scholar 

  11. Dellipizzi A, Hilchley SD, McGiff JC, Bell-Quilley CP (1994) Natriuretic action of angiotensin-(1–7). Br J Pharmacol 11:1–4

    Google Scholar 

  12. Du Bois R, Verniory A, Abramow M (1976) Computation of the osmotic water permeability of perfused tubule segments. Kidney Int 10:478–479

    PubMed  Google Scholar 

  13. Erdös EG, Skiedgel RA (1990) Renal metabolism of angiotensin I and II. Kidney Int 38:24–27

    Google Scholar 

  14. Ferrario CM, Chappell MC, Dean RH, Iyer SN (1998) Novel angiotensin peptides regulate blood pressure, endothelial function, and natriuresis. J Am Soc Nephrol 9:1716–1722

    CAS  PubMed  Google Scholar 

  15. Garcia NH, Garvin JL (1994) Angiotensin-(1–7) has a biphasic effect on fluid absorption in the proximal straight tubule. J Am Soc Nephrol 5:1133–1138

    CAS  PubMed  Google Scholar 

  16. Handa RK (2000) Metabolism alters the selectivity of angiotensin-(1–7) receptor ligands for angiotensin receptors. J Am Soc Nephrol 11:1377–1386

    CAS  PubMed  Google Scholar 

  17. Handa RK, Ferrario CM, Strandhoy JW (1996) Renal actions of angiotensin-(1–7): in vivo and in vitro studies. Am J Physiol 270:F141–F147

    CAS  PubMed  Google Scholar 

  18. Hidaka H, Inagaki M, Kawamoto S, Sasaki Y (1984) Isoquinolinesulfonamides, novel kinase and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C. Biochemistry 23:5036–5041

    CAS  PubMed  Google Scholar 

  19. Hilchey SD, Caroline P, Bell-Quilley CP (1995) Association between the natriuretic action of angiotensin-(1–7) and selective stimulation of renal prostaglandin I2 release. Hypertension 25:1238–1244

    CAS  PubMed  Google Scholar 

  20. Inagami T (1999) Molecular biology and signaling of angiotensin receptors: an overview. J Am Soc Nephrol 10:S2–S7

    CAS  PubMed  Google Scholar 

  21. Jaiswal N, Tallant EA, Jaiswal RK, Diz DI, Ferrario CM (1993) Differential regulation of prostaglandin synthesis by angiotensin peptides in porcine aortic smooth muscle cells: subtypes of angiotensin receptors involved. J Pharmacol Exp Ther 265:664–673

    CAS  PubMed  Google Scholar 

  22. Krob HA, Vinsant HL, Ferrario CM, Friedman DP (1998) Angiotensin-(1–7) immunoreactivity in the hypothalamus of (mRen-2d)27 transgenic rat. Brain Res 798:36–45

    Article  CAS  PubMed  Google Scholar 

  23. Lara LS, Bica RBS, Sena SLF, Correa JS, Marques-Fernandes MF, Lopes AG, Caruso-Neves C (2002) Angiotensin-(1–7) reverts the stimulatory effect of angiotensin II on the proximal tubule Na+-ATPase activity via A-779-sensitive receptor. Regl Pept 103:17–22

    Article  CAS  Google Scholar 

  24. Lowry OH (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  25. Magaldi AJ, Cesar KR, Araujo M (2003) cAMP stimulated by hydrochlorothiazide increases water absorption in vasopressin absence in rat IMCD (abstract). World Congress of Nephrology, Berlin, Abstr. T14:289

  26. Muthalif MM, Benter IF, Uddin MR, Harper JL, Malik KU (1998) Signal transduction mechanisms involved in angiotensin-(1–7)-stimulated arachidonic acid release and prostanoid synthesis in rabbit aortic smooth muscle cells. J Pharmacol Exp Ther 284:388–398

    CAS  PubMed  Google Scholar 

  27. Nielsen S, Frokler J, Marples D, Kwon TH, Agre P, Knepper MA (2002) Aquaporin in the kidney: from molecules to medicine. Physiol Rev 82:205–244

    CAS  PubMed  Google Scholar 

  28. Oliveira MA, Fortes ZB, Santos RAS, Khosla MC, Carvalho MHC (1999) Synergistic effect of angiotensin-(1–7) on bradykinin arteriolar dilation in vivo. Peptides 20:1195–1201

    Article  CAS  PubMed  Google Scholar 

  29. Santos JC, Jerez S, Peral De Bruno M, Coviello A (2000) Angiotensin-(1–7) increases osmotic water permeability in isolated toad skin. Braz J Med Res 33:1099–1104

    CAS  Google Scholar 

  30. Santos RAS, Campagnole-Santos MJ, Baracho NCV, Fontes MAP, Silva LCS, Neves LAA, Oliveira DR, Caligiorne SM, Rodrigues ARV, Gropen C Jr, Carvalho WS, Simões e Silva AC, Khosla MC (1994) Characterization of a new angiotensin antagonist selective for angiotensin-(1–7). Evidence that the actions of angiotensin-(1–7) are mediated by specific angiotensin receptors. Brain Res Bull 35:293–298

    Article  CAS  PubMed  Google Scholar 

  31. Santos RAS, Simões e Silva AC, Magaldi AJ, Khosla MC, Cesar KR, Passaglio KT, Baracho NCV (1996) Evidence for a physiological role of angiotensin-(1–7) in the control of hydroelectrolyte balance. Hypertension 27:875–884

    CAS  PubMed  Google Scholar 

  32. Santos RAS, Campagnole-Santos MJ, Andrade SP (2000) Angiotensin-(1–7): an update. Regl Pept 91:45–62

    Article  CAS  Google Scholar 

  33. Santos RAS, Passaglio KT, Pesquero JB, Bader M, Simões e Silva AC (2001) Interactions between angiotensin-(1–7), kinins and angiotensin ii in kidney and blood vessels. Hypertension 38:660–664

    PubMed  Google Scholar 

  34. Santos RAS, Simoes e Silva AC, Maric C, Silva DMR, Machado RP, de Buhr I, Heringer-Walther S, Pinheiro SVB, Lopes MT, Bader M, Mendes EP, Lemos VS, Campagnole-Santos MJ, Schultheiss HP, Speth R, Walther T (2003) Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA 100:8258–8263

    Article  PubMed  Google Scholar 

  35. Schiavone MT, Santos RAS, Brosnihan KB, Khosla MC, Ferrario CM (1988) Release of vasopressin from the rat hypothalamo-neurohypophysial system by angiotensin-(1–7) heptapeptide. Proc Natl Acad Sci USA 85:4095–4098

    CAS  PubMed  Google Scholar 

  36. Simões e Silva AC, Baracho NCV, Passaglio KT, Santos RAS (1997) Renal actions of angiotensin-(1–7). Braz J Med Biol Res 30:503–513

    PubMed  Google Scholar 

  37. Simões e Silva AC, Bello APC, Baracho NC, Khosla MC, Santos RAS (1998) Diuresis and natriuresis produced by long term administration of a selective angiotensin-(1–7) antagonist in normotensive and hypertensive rats. Regl Pept 74:177–184

    Google Scholar 

  38. Simonds WF (1999) G protein regulation of adenylate cyclase. Trends Pharmacol. Sci 20:66–73

    CAS  PubMed  Google Scholar 

  39. Stephenson SL, Kenny AJ (1987) Metabolism of neuropeptides. Biochem J 241:237–247

    CAS  PubMed  Google Scholar 

  40. Stokes JB, Grupp C, Kinne RKH (1987) Purification of rat papillary collecting ducts cells: functional and metabolic assessment. Am J Physiol 253:F251–F262

    CAS  PubMed  Google Scholar 

  41. Turner AJ, Hooper NM (2002) The angiotensin-converting enzyme gene family: genomics and pharmacology. Trends Pharmacol Sci 23:177–183

    Article  CAS  PubMed  Google Scholar 

  42. Vallon V, Richter K, Heyne N, Oswald H (1997) Effect of intratubular application of angiotensin-(1–7) on nephron function. Kidney Blood Press Res 20:233–239

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by PRONEX-CNPq, LIM HCFMUSP and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP). The Laboratory LIM 12 is also supported by the Fundação Faculdade de Medicina (FFM). A J Magaldi and RAS Santos were supported in part by a fellowship from Conselho Nacional de Pesquisa-CNPq. Parts of this work were presented at the XIIIth Int Cong Nephrol Madrid p 53, 1995 and in the XXXIVth Cong Eur Renal Ass Genebra, p10, 1997.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio J. Magaldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magaldi, A.J., Cesar, K.R., de Araújo, M. et al. Angiotensin-(1–7) stimulates water transport in rat inner medullary collecting duct: evidence for involvement of vasopressin V2 receptors. Pflugers Arch - Eur J Physiol 447, 223–230 (2003). https://doi.org/10.1007/s00424-003-1173-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-003-1173-1

Keywords

Navigation