Skip to main content
Log in

Na+/K+ pump and endothelial cell survival: [Na+]i/[K+]i-independent necrosis triggered by ouabain, and protection against apoptosis mediated by elevation of [Na+]i

  • Cell and Molecular Physiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Recent studies have demonstrated the tissue-specific effect of Na+/K+ pump inhibition by ouabain and other cardiac glycosides on cell viability. The vascular endothelium is an initial target of cardiac glycosides employed for the management of congestive heart failure as well as circulating endogenous ouabain-like substances (EOLS), the production of which is augmented in volume-expanded hypertension. This study examined the role of the Na+/K+ pump in the survival of cultured porcine aortic endothelial cells (PAEC). Complete Na+/K+ pump inhibition with ouabain led to PAEC death, indicated by cell detachment and decreased staining with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Based on cell swelling and resistance to benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (z-VAD.fmk) a pan-caspase inhibitor, this type of cell death was classified as necrosis. In contrast to ouabain, Na+/K+ pump inhibition in K+-free medium did not affect PAEC viability and sharply attenuated apoptosis triggered by 3H decay-induced DNA damage. Necrosis evoked by ouabain was preserved after dissipation of the transmembrane gradient of K+ and Na+, whereas dissipation of the Na+ gradient abolished the antiapoptotic action of K+-free medium. Comparative analysis of these results and modulation of intracellular Na+ and K+ content by the above-listed stimuli showed that interaction of ouabain with Na+/K+-ATPase triggered necrosis independently of inhibition of Na+/K+ pump-mediated ion fluxes and inversion of the [Na+]i/[K+]i ratio, whereas protection against apoptosis under Na+/K+ pump inhibition in K+-depleted medium was mediated by [Na+]i elevation. The role of Na+/K+ pump-mediated regulation of endothelial cell survival and vascular remodelling seen in hypertension should be investigated further in context of EOLS and chronic treatment with digitalis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Akera T, Ng Y-C, Shien I-S, Bero E, Brody TM, Braselton WE (1985) Effects of K+ on the interaction between cardiac glycosides and Na,K-ATPase. Eur J Pharmacol 111:147–157

    Article  CAS  PubMed  Google Scholar 

  2. Barros LF, Hermosilla T, Castro J (2001) Necrotic volume increase and the early physiology of necrosis. Comp Biochem Physiol [A] 130:401–409

  3. Berridge MV, Tan AS (1993) Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-3,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys 303:474–482

    Article  CAS  PubMed  Google Scholar 

  4. Blanco G, Mercer RW (1998) Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol 275:F633–F650

    CAS  PubMed  Google Scholar 

  5. Blaustein MP, Lederer WJ (1999) Sodium/calcium exchange: its physiological implications. Physiol Rev 79:763–854

    CAS  PubMed  Google Scholar 

  6. Bolivar JJ, Lazaro A, Fernandez S, Stefani E, Pena-Cruz V, Lechene C, Cereijido M (1987) Rescue of a wild-type MDCK cell by a ouabain-resistant mutant. Am J Physiol 253:C151–C161

    CAS  PubMed  Google Scholar 

  7. Champagne M-J, Dumas P, Orlov SN, Bennett MR, Hamet P, Tremblay J (1999) Protection against necrosis but not apoptosis by heat-stress proteins in vascular smooth muscle cells: evidence for distinct modes of cell death. Hypertension 33:906–913

    PubMed  Google Scholar 

  8. Collins RJ, Harmon BV, Gobe GC, Kerr JFR (1991) Internucleosomal DNA cleavage should not be the sole criterion for identifying apoptosis. Int J Radiat Biol 61:451–453

    Google Scholar 

  9. Columbano A (1995) Cell death: current difficulties in discriminating apoptosis from necrosis in the context of pathological processes in vivo. J Cell Biochem 58:181–190

    CAS  PubMed  Google Scholar 

  10. Comfurius P, Senden JM, Tilly RH, Schroit AJ, Bevers EM, Zwaal RF (1990) Loss of membrane phospholipid asymmetry in platelets and red cells may be associated with calcium-induced shedding of plasma membrane and inhibition of aminophospholipid translocase. Biochim Biophys Acta 1026:153–160

    CAS  PubMed  Google Scholar 

  11. Contreras RG, Lazaro A, Mujica A, Gonzalez-Mariscal L, Valdes J, Garcia-Villegas MR, Cereijido M (1995) Ouabain resistance of the epithelial cell line (Ma104) is not due to lack of affinity of its pumps for the drug. J Membr Biol 145:295–300

    CAS  PubMed  Google Scholar 

  12. Contreras RG, Shoshani L, Flores-Maldonado C, Lazaro A, Cereijido M (1999) Relationship between Na+,K+-ATPase and cell attachment. J Cell Sci 112:4223–4232

    CAS  PubMed  Google Scholar 

  13. Deneccker G, Vercammen D, Steemans M, Vanden Berghe T, Brouckaert G, Van Loo G, Zhivotovsky B, Fiers W, Grooten J, Declercq W, Vandenabeele P (2001) Death receptor-induced apoptotic and necrotic cell death: differential role of caspases and mitochondria. Cell Death Differ 8:829–840

    Article  CAS  PubMed  Google Scholar 

  14. Dmitrieva RI, Doris PA (2002) Cardiotonic steroids: potential endogenous sodium pump ligands with diverse function. Exp Biol Med 227:561–569

    CAS  Google Scholar 

  15. Dong X, Saikumar P, Weinberg JM, Venkatachalam MA (1997) Internucleosomal DNA cleavage triggered by plasma membrane damage during necrotic cell death. Am J Pathol 151:1205–1213

    CAS  PubMed  Google Scholar 

  16. Falciola J, Volet B, Anner RM, Moosmayer M, Lacotte D, Anner BM (1994) Role of cell membrane Na,K-ATPase for survival of human lymphocytes in vivo. Biosci Rep 14:189–204

    CAS  PubMed  Google Scholar 

  17. Féraille E, Doucet A (2001) Sodium-potassium-adenosinetriphosphatase-dependent sodium transport in the kidney: hormonal control. Physiol Rev 81:345–418

    CAS  PubMed  Google Scholar 

  18. Glitsch HG (2001) Electrophysiology of the sodium-potassium-ATPase in cardiac cells. Physiol Rev 81:1791–1826

    CAS  PubMed  Google Scholar 

  19. Heiden MGV, Chandel NS, Williamson EK, Schumacker PT, Thompson CB (1997) Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell 91:627–637

    PubMed  Google Scholar 

  20. Isaev NK, Stelmashook EV, Halle A, Harms C, Lautenschlager M, Weih M, Dirnagl U, Victorov IV, Zorov DB (2000) Inhibition of Na+,K+-ATPase activity in cultured cerebellar granule cells prevents the onset of apoptosis induced by low potassium. Neurosci Lett 283:41–44

    Article  CAS  PubMed  Google Scholar 

  21. Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    PubMed  Google Scholar 

  22. Kitanaka C, Kuchino Y (1999) Caspase-independent programmed cell death with necrotic morphology. Cell Death Differ 6:508–515

    Article  CAS  PubMed  Google Scholar 

  23. Kroemer G, Dallaporta B, Resche-Rigon M (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60:619–642

    CAS  PubMed  Google Scholar 

  24. Ledbetter ML, Young GJ, Wright ER (1986) Cooperation between epithelial cells demonstrated by potassium transfer. Am J Physiol 250:C306–C313

    CAS  PubMed  Google Scholar 

  25. Lingrel JB, Croyle ML, Argüello JM (1998) Ligand binding sites of Na,K-ATPase. Acta Physiol Scand 163 (Suppl. 643):69–77

  26. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    CAS  PubMed  Google Scholar 

  27. Okada Y, Maeno E, Shimizu T, Dezaki K, Wang J, Morishima S (2001) Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD). J Physiol (Lond) 532:3–16

  28. Orlov SN, Dam TV, Tremblay J, Hamet P (1996) Apoptosis in cultured vascular smooth muscle cells. Role of cell volume decrease. Biochem Biophys Res Commun 221:708–715

    Article  CAS  PubMed  Google Scholar 

  29. Orlov SN, Thorin-Trescases N, Dulin NO, Dam T-V, Fortuno MA, Tremblay J, Hamet P (1999) Activation of cAMP signaling transiently inhibits apoptosis in vascular smooth muscle cells in a site upstream of caspase 3. Cell Death Differ 6:691–672

    Article  Google Scholar 

  30. Orlov SN, Thorin-Trescases N, Kotelevtsev SV, Tremblay J, Hamet P (1999) Inversion of the intracellular Na+/K+ ratio blocks apoptosis in vascular smooth muscle at a site upstream of caspase-3. J Biol Chem 274:16545–16552

    Article  CAS  PubMed  Google Scholar 

  31. Orlov SN, Taurin S, Tremblay J, Hamet P (2001) Inhibition of Na+,K+ pump affects nucleic acid synthesis and smooth muscle cell proliferation via elevation of the [Na+]i/[K+]i ratio: possible implication in vascular remodeling. J Hypertens 19:1559–1565

    Article  CAS  PubMed  Google Scholar 

  32. Orlov SN, Pchejetski D, der Sarkissian S, Adarichev VA, Taurin S, Pshezhetsky AV, Tremblay J, Maximov GV, DeBlois D, Bennett MR, Hamet P (2003) [3H]-Thymidine labelling of DNA triggers apoptosis potentiated by E1A-adenoviral protein. Apoptosis 8:199–208

    Article  CAS  PubMed  Google Scholar 

  33. Pchejetski D, Taurin S, der Sarkissian S, Lopina OD, Pshezhetsky AV, Tremblay J, DeBlois D, Hamet P, Orlov SN (2003) Inhibition of Na+,K+-ATPase by ouabain triggers epithelial cell death independently of inversion of the [Na+]i/[K+]i ratio. Biochem Biophys Res Commun 301:735–744

    Article  CAS  PubMed  Google Scholar 

  34. Peng M, Huang L, Xie Z, Huang W-H, Askari A (1996) Partial inhibition of Na+/K+-ATPase by ouabain induces the Ca2+-dependent expression of early-response genes in cardiac myocytes. J Biol Chem 271:10372–10378

    Article  CAS  PubMed  Google Scholar 

  35. Porter AG, Janicke RU (1999) Emerging role of caspase-3 in apoptosis. Cell Death Differ 6:99–104

    CAS  PubMed  Google Scholar 

  36. Spyridopoulos I (1999) Apoptosis and cell cycle in endothelial cells. In: Schunkert H, Riegger GAJ (eds) Apoptosis in cardiac biology. Kluwer, Boston, pp 141–156

  37. Taurin S, Dulin NO, Pchejetski D, Grygorczyk R, Tremblay J, Hamet P, Orlov SN (2002) c-Fos expression in ouabain-treated vascular smooth muscle cells from rat aorta: evidence for an intracellular-sodium-mediated, calcium-independent mechanism. J Physiol (Lond) 543:835–847

  38. Taurin S, Seyrantepe V, Orlov SN, Tremblay T-L, Thibaut P, Bennett MR, Hamet P, Pshezhetsky AV (2002) Proteome analysis and functional expression identify mortalin as an anti-apoptotic gene induced by elevation of [Na+]i/[K+]i ratio in cultured vascular smooth muscle cells. Circ Res 91:915–922

    Article  CAS  PubMed  Google Scholar 

  39. Therien AG, Blostien R (2000) Mechanisms of sodium pump regulation. Am J Physiol 279:C541–C566

    CAS  PubMed  Google Scholar 

  40. Thorin E, Hamilton CA, Dominiczak MH, Reid JL (1994) Chronic exposure of cultured bovine endothelial cells to oxidized LDL abolishes prostacyclin release. Arterioscler Thromb 14:453–459

    CAS  PubMed  Google Scholar 

  41. Wallick ET, Schwartz A (1988) Interaction of cardiac glycosides with Na+,K+-ATPase. Methods Enzymol 156:201–213

    CAS  PubMed  Google Scholar 

  42. Warny M, Kelly CP (1999) Monocytic cell necrosis is mediated by potassium depletion and caspase-like proteases. Am J Physiol 276:C717–C724

    CAS  PubMed  Google Scholar 

  43. Williamson P, Algarin L, Bateman J, Choe HR, Schlegel RA (1985) Phospholipid asymmetry in human erythrocyte ghosts. J Cell Physiol 123:209–214

    CAS  PubMed  Google Scholar 

  44. Wyllie AH (1993) Apoptosis. The 1992 Frank Rose memorial lecture. Br J Cancer 67:205–208

    CAS  PubMed  Google Scholar 

  45. Xiao AY, Wei L, Xia S, Rothman S, Yu SP (2002) Ionic mechanism of ouabain-induced concurrent apoptosis and necrosis in individual cultured cortical neurones. J Neurosci 22:1350–1362

    CAS  PubMed  Google Scholar 

  46. Yeh JY, Huang WJ, Kan S-F, Wang PS (2001) Inhibitory effects of digitalis on the proliferation of androgen dependent and independent prostate cancer cells. J Urol 166:1937–1942

    Article  CAS  PubMed  Google Scholar 

  47. Zhou X, Jiang G, Zhao A, Bondeva T, Hirzel P, Balla T (2001) Inhibition of Na,K-ATPase activates PI3 kinase and inhibits apoptosis in LLC-PK1 cells. Biochem Biophys Res Commun 285:46–51

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Canadian Institutes of Health Research (PH and SNO) and the Heart and Stroke Foundation of Canada (SNO, JT and PH). The technical assistance of Monique Poirier and the editorial help of Ovid Da Silva are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei N. Orlov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orlov, S.N., Thorin-Trescases, N., Pchejetski, D. et al. Na+/K+ pump and endothelial cell survival: [Na+]i/[K+]i-independent necrosis triggered by ouabain, and protection against apoptosis mediated by elevation of [Na+]i . Pflugers Arch - Eur J Physiol 448, 335–345 (2004). https://doi.org/10.1007/s00424-004-1262-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-004-1262-9

Keywords

Navigation