Skip to main content
Log in

ER-localized bestrophin 1 activates Ca2+-dependent ion channels TMEM16A and SK4 possibly by acting as a counterion channel

  • Signaling and Cell Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Bestrophins form Ca2+-activated Cl channels and regulate intracellular Ca2+ signaling. We demonstrate that bestrophin 1 is localized in the endoplasmic reticulum (ER), where it interacts with stromal interacting molecule 1, the ER-Ca2+ sensor. Intracellular Ca2+ transients elicited by stimulation of purinergic P2Y2 receptors in HEK293 cells were augmented by hBest1. The p21-activated protein kinase Pak2 was found to phosphorylate hBest1, thereby enhancing Ca2+ signaling and activation of Ca2+-dependent Cl (TMEM16A) and K+ (SK4) channels. Lack of bestrophin 1 expression in respiratory epithelial cells of mBest1 knockout mice caused expansion of ER cisterns and induced Ca2+ deposits. hBest1 is, therefore, important for Ca2+ handling of the ER store and may resemble the long-suspected counterion channel to balance transient membrane potentials occurring through inositol triphosphate (IP3)-induced Ca2+ release and store refill. Thus, bestrophin 1 regulates compartmentalized Ca2+ signaling that plays an essential role in Best macular dystrophy, inflammatory diseases such as cystic fibrosis, as well as proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

hBest1:

human bestrophin 1

CaCC:

Ca2+-activated Cl channels

SK4:

small conductance calcium-activated potassium channel type 4

TMEM16A:

transmembrane protein 16A

ANO1:

anoctamin 1

Pak2:

p21-activated protein kinase

ER:

endoplasmic reticulum

SERCA:

sarcoendoplasmic reticulum calcium ATPase

Stim1:

stromal interacting molecule 1

DIDS:

4,4′-diisothio-cyanostilbene-2,2′-disulfonic acid

References

  1. AlDehni F, Spitzner M, Martins JR, Barro Soria R, Schreiber R, Kunzelmann K (2009) Role of bestrophin for proliferation and in epithelial to mesenchymal transition. J Am Soc Nephrol 20:1556–1564

    Article  CAS  PubMed  Google Scholar 

  2. Almaca J, Tian Y, AlDehni F, Ousingsawat J, Kongsuphol P, Rock JR, Harfe BD, Schreiber M, Kunzelmann K (2009) TMEM16 proteins produce volume regulated chloride currents that are reduced in mice lacking TMEM16A. J Biol Chem. doi:10.1074/jbc.M109.010074

    PubMed  Google Scholar 

  3. Bachhuber T, König J, Voelcker T, Mürle B, Schreiber R, Kunzelmann K (2005) Chloride interference with the epithelial Na+ channel ENaC. J Biol Chem 280:31587–31594

    Article  CAS  PubMed  Google Scholar 

  4. Barro Soria R, Schreiber R, Kunzelmann K (2008) Bestrophin 1 and 2 are components of the Ca2+ activated Cl conductance in mouse airways. Biochim Biophys Acta 1783:1993–2000

    Article  CAS  PubMed  Google Scholar 

  5. Barro Soria R, Spitzner M, Schreiber R, Kunzelmann K (2006) Bestrophin 1 enables Ca2+ activated Cl conductance in epithelia. J Biol Chem 281:17460–17467

    Google Scholar 

  6. Begault B, Anagnostopoulos T, Edelman A (1993) ATP-regulated chloride conductance in endoplasmic reticulum (ER)-enriched pig pancreas microsomes. Biochim Biophys Acta 1152:319–327

    Article  CAS  PubMed  Google Scholar 

  7. Berridge MJ (2002) The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium 32:235–249

    Article  CAS  PubMed  Google Scholar 

  8. Berridge MJ, Irvine RF (1989) Inositol phosphates and cell signalling. Nature 341:197–205

    Article  CAS  PubMed  Google Scholar 

  9. Boudes M, Sar C, Menigoz A, Hilaire C, Pequignot MO, Kozlenkov A, Marmorstein AD, Carroll P, Valmier J, Scamps F (2009) Best1 is a gene regulated by nerve injury and required for Ca2+-activated Cl current expression in axotomized sensory neurons. J Neurosci 29:10063–10071

    Article  CAS  PubMed  Google Scholar 

  10. Brandman O, Liou J, Park WS, Meyer T (2007) STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 131:1327–1339

    Article  CAS  PubMed  Google Scholar 

  11. Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O, Galietta LJ (2008) TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322:590–594

    Article  CAS  PubMed  Google Scholar 

  12. Chu PC, Wu J, Liao XC, Pardo J, Zhao H, Li C, Mendenhall MK, Pali E, Shen M, Yu S, Taylor VC, Aversa G, Molineaux S, Payan DG, Masuda ES (2004) A novel role for p21-activated protein kinase 2 in T cell activation. J Immunol 172:7324–7334

    CAS  PubMed  Google Scholar 

  13. Coonan JR, Lamb GD (1998) Effect of chloride on Ca2+ release from the sarcoplasmic reticulum of mechanically skinned skeletal muscle fibres. Pflugers Arch 435:720–730

    Article  CAS  PubMed  Google Scholar 

  14. Fischer KG, Leipziger J, Rubini-Illes P, Nitschke R, Greger R (1996) Attenuation of stimulated Ca2+ influx in colonic epithelial (HT29) cells by cAMP. Pflugers Arch 432:735–740

    Article  CAS  PubMed  Google Scholar 

  15. Hartzell HC (2008) Molecular physiology of bestrophins: multifunctional membrane proteins linked to best disease and other retinopathies. Physiol Rev 88:639–672

    Article  CAS  PubMed  Google Scholar 

  16. Hirota S, Helli P, Janssen LJ (2007) Ionic mechanisms and Ca2+ handling in airway smooth muscle. Eur Respir J 30:114–133

    Article  CAS  PubMed  Google Scholar 

  17. Hirota S, Trimble N, Pertens E, Janssen LJ (2006) Intracellular Cl fluxes play a novel role in Ca2+ handling in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 290:L1146–L1153

    Article  CAS  PubMed  Google Scholar 

  18. Huang Z, Ling J, Traugh JA (2003) Localization of p21-activated protein kinase gamma-PAK/Pak2 in the endoplasmic reticulum is required for induction of cytostasis. J Biol Chem 278:13101–13109

    Article  CAS  PubMed  Google Scholar 

  19. Janssen LJ (2002) Ionic mechanisms and Ca2+ regulation in airway smooth muscle contraction: do the data contradict dogma? Am J Physiol Lung Cell Mol Physiol 282:L1161–L1178

    CAS  PubMed  Google Scholar 

  20. Janssen LJ (2009) Asthma therapy: how far have we come, why did we fail and where should we go next? Eur Respir J 33:11–20

    Article  CAS  PubMed  Google Scholar 

  21. Joiner WJ, Wang LY, Tang MD, Kaczmarek LK (1997) hSK4, a member of a novel subfamily of calcium-activated potassium channels. Proc Natl Acad Sci USA 94:11013–11018

    Article  CAS  PubMed  Google Scholar 

  22. Kourie JI (1997) ATP-sensitive voltage- and calcium-dependent chloride channels in sarcoplasmic reticulum vesicles from rabbit skeletal muscle. J Membr Biol 157:39–51

    Article  CAS  PubMed  Google Scholar 

  23. Kunzelmann K, Milenkovic VM, Spitzner M, Barro Soria R, Schreiber R (2007) Calcium dependent chloride conductance in epithelia: Is there a contribution by Bestrophin? Pflugers Arch 454:879–889

    Article  CAS  PubMed  Google Scholar 

  24. Marmorstein AD, Marmorstein LY, Rayborn M, Wang X, Hollyfield JG, Petrukhin K (2000) Bestrophin, the product of the Best vitelliform macular dystrophy gene (VMD2), localizes to the basolateral plasma membrane of the retinal pigment epithelium. Proc Natl Acad Sci USA 97:12758–12763

    Article  CAS  PubMed  Google Scholar 

  25. Marmorstein LY, McLaughlin PJ, Stanton JB, Yan L, Crabb JW, Marmorstein AD (2002) Bestrophin interacts physically and functionally with protein phosphatase 2A. J Biol Chem 277(34):30591–30597

    Article  CAS  PubMed  Google Scholar 

  26. Milenkovic VM, Schreiber R, Barro Soria R, AlDehni F, Kunzelmann K (2009) Functional assembly and purinergic activation of bestrophins. Pflugers Arch 458:431–441

    Article  CAS  PubMed  Google Scholar 

  27. Nakai J, Ohkura M, Imoto K (2001) A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat Biotechnol 19:137–141

    Article  CAS  PubMed  Google Scholar 

  28. O’Driscoll KE, Leblanc N, Hatton WJ, Britton FC (2009) Functional properties of murine bestrophin 1 channel. Biochem Biophys Res Commun 384:476–481

    Article  PubMed  Google Scholar 

  29. Park KS, Jeon SH, Oh JW, Choi KY (2004) p21Cip/WAF1 activation is an important factor for the ERK pathway dependent anti-proliferation of colorectal cancer cells. Exp Mol Med 36:557–562

    CAS  PubMed  Google Scholar 

  30. Qu Z, Fischmeister R, Hartzell HC (2004) Mouse bestrophin-2 is a bona fide Cl channel: identification of a residue important in anion binding and conduction. J Gen Physiol 123:327–340

    Article  CAS  PubMed  Google Scholar 

  31. Qu Z, Wei RW, Mann W, Hartzell HC (2003) Two bestrophins cloned from Xenopus laevis oocytes express Ca-activated Cl currents. J Biol Chem 278:49563–49572

    Article  CAS  PubMed  Google Scholar 

  32. Ribeiro CM, Paradiso AM, Carew MA, Shears SB, Boucher RC (2005) Cystic fibrosis airway epithelial Ca2+ i signaling. The mechanism for the larger agonist-mediated Ca2+ i signals in human cystic fibrosis airway epithelia. J Biol Chem 280:10202–10209

    Article  CAS  PubMed  Google Scholar 

  33. Rosenthal R, Bakall B, Kinnick T, Peachey N, Wimmers S, Wadelius C, Marmorstein AD, Strauss O (2006) Expression of bestrophin-1, the product of the VMD2 gene, modulates voltage-dependent Ca2+ channels in retinal pigment epithelial cells. FASEB J 20:178–180

    CAS  PubMed  Google Scholar 

  34. Schreiber R (2005) Ca2+ signaling, intracellular pH and cell volume in cell proliferation. J Membr Biol 205:129–137

    Article  CAS  PubMed  Google Scholar 

  35. Schreiber R, Castrop H, Kunzelmann K (2008) Allergen induced airway hyperresponsiveness is absent in ecto-5′-nucleotidase (CD73) deficient mice. Pflugers Arch 457:431–440

    Article  CAS  PubMed  Google Scholar 

  36. Schroeder BC, Cheng T, Jan YN, Jan LY (2008) Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 134:1019–1029

    Article  CAS  PubMed  Google Scholar 

  37. Spitzner M, Martins JR, Barro Soria R, Ousingsawat J, Scheidt K, Schreiber R, Kunzelmann K (2008) Eag1 and bestrophin 1 are upregulated in fast growing colonic cancer cells. J Biol Chem 283:7421–7428

    Article  CAS  PubMed  Google Scholar 

  38. Stanton JB, Goldberg AF, Hoppe G, Marmorstein LY, Marmorstein AD (2006) Hydrodynamic properties of porcine bestrophin-1 in Triton X-100. Biochim Biophys Acta 1758:241–247

    Article  CAS  PubMed  Google Scholar 

  39. Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85:845–881

    Article  CAS  PubMed  Google Scholar 

  40. Sun H, Tsunenari T, Yau KW, Nathans J (2001) The vitelliform macular dystrophy protein defines a new family of chloride channels. Proc Natl Acad Sci USA 99:4008–4013

    Article  Google Scholar 

  41. Takeshima H, Komazaki S, Hirose K, Nishi M, Noda T, Iino M (1998) Embryonic lethality and abnormal cardiac myocytes in mice lacking ryanodine receptor type 2. EMBO J 17:3309–3316

    Article  CAS  PubMed  Google Scholar 

  42. Tsunenari T, Sun H, Williams J, Cahill H, Smallwood P, Yau KW, Nathans J (2003) Structure–function analysis of the bestrophin family of anion channels. J Biol Chem 278:41114–41125

    Article  CAS  PubMed  Google Scholar 

  43. Wilkes MC, Murphy SJ, Garamszegi N, Leof EB (2003) Cell-type-specific activation of PAK2 by transforming growth factor beta independent of Smad2 and Smad3. Mol Cell Biol 23:8878–8889

    Article  CAS  PubMed  Google Scholar 

  44. Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, Park SP, Lee J, Lee B, Kim BM, Raouf R, Shin YK, Oh U (2008) TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455:1210–1215

    Article  CAS  PubMed  Google Scholar 

  45. Yazawa M, Ferrante C, Feng J, Mio K, Ogura T, Zhang M, Lin PH, Pan Z, Komazaki S, Kato K, Nishi M, Zhao X, Weisleder N, Sato C, Ma J, Takeshima H (2007) TRIC channels are essential for Ca2+ handling in intracellular stores. Nature 448:78–82

    Article  CAS  PubMed  Google Scholar 

  46. Zhan Q, Ge Q, Ohira T, Van Dyke T, Badwey JA (2003) p21-activated kinase 2 in neutrophils can be regulated by phosphorylation at multiple sites and by a variety of protein phosphatases. J Immunol 171:3785–3793

    CAS  PubMed  Google Scholar 

  47. Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA, Cahalan MD (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437:902–905

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the grants DFG SFB699 A6/A7, DFG KU 756/8-2, and Else Kröner-Fresenius-Stiftung P36/05//A44/05. We are grateful for the technical expertise of Caio Toledo, Christine Meese, Karin Schadendorf, Helga Schmidt, and Uwe de Vries in performing the ultrastructural analysis. The Ca2+-sensitive GFP protein G-CaMP2 was kindly provided by Dr. J. Nakai, Wako City Saitama, Japan. We gratefully acknowledge the supply of the vmd2−/− mice by MERCK Research Laboratories (770 Sumneytown Pike, West Point, PA, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Kunzelmann.

Additional information

René Barro-Soria and Fadi Aldehni contributed equally to the present study.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Supplement 1

(PDF 103 kb).

Supplement 2

(PDF 61.3 kb).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barro-Soria, R., Aldehni, F., Almaça, J. et al. ER-localized bestrophin 1 activates Ca2+-dependent ion channels TMEM16A and SK4 possibly by acting as a counterion channel. Pflugers Arch - Eur J Physiol 459, 485–497 (2010). https://doi.org/10.1007/s00424-009-0745-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-009-0745-0

Keywords

Navigation