Skip to main content

Advertisement

Log in

Hormonal modulation of endothelial NO production

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Since the discovery of endothelium-derived relaxing factor and the subsequent identification of nitric oxide (NO) as the primary mediator of endothelium-dependent relaxations, research has focused on chemical and physical stimuli that modulate NO levels. Hormones represent a class of soluble, widely circulating chemical factors that impact production of NO both by rapid effects on the activity of endothelial nitric oxide synthase (eNOS) through phosphorylation of the enzyme and longer term modulation through changes in amount of eNOS protein. Hormones that increase NO production including estrogen, progesterone, insulin, and growth hormone do so through both of these common mechanisms. In contrast, some hormones, including glucocorticoids, progesterone, and prolactin, decrease NO bioavailability. Mechanisms involved include binding to repressor response elements on the eNOS gene, competing for co-regulators common to hormones with positive genomic actions, regulating eNOS co-factors, decreasing substrate for eNOS, and increasing production of oxygen-derived free radicals. Feedback regulation by the hormones themselves as well as the ability of NO to regulate hormonal release provides a second level of complexity that can also contribute to changes in NO levels. These effects on eNOS and changes in NO production may contribute to variability in risk factors, presentation of and treatment for cardiovascular disease associated with aging, pregnancy, stress, and metabolic disorders in men and women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ACTH:

adrenocorticotropic (corticotrophin) hormone

DHEA:

dehydroepiandrosterone

E2:

17β-estradiol

eNOS:

endothelial nitric oxide synthase

FSH:

follicle stimulating hormone

GH:

growth hormone

Glc:

glucocorticoids

LH:

luteinizing hormone

NO:

nitric oxide

T3:

L3,5,3′-triiodothryronine

T:

testosterone

+:

increases in activity

-:

decreases in activity

References

  1. Arnal JF, Gourdy P, Simoncini T (2009) Interference of progestins with endothelial actions of estrogens a matter of glucocorticoid action or deprivation? Arterioscler Thromb Vasc Biol 29:441–443

    Article  CAS  PubMed  Google Scholar 

  2. Baker PN, Davidge ST, Roberts JM (1995) Plasma from women with preeclampsia increases endothelial cell nitric oxide production. Hypertension 26:244–248

    CAS  PubMed  Google Scholar 

  3. Biddie SC, Hager GL (2009) Glucocorticoid receptor dynamics and gene regulation. Stress 12:193–205

    Article  CAS  PubMed  Google Scholar 

  4. Boger RH, Skamira C, Bode-Boger SM et al (1996) Nitric oxide may mediate the hemodynamic effects of recombinant growth hormone in patients with acquired growth hormone deficiency. A double-blind, placebo-controlled study. J Clin Invest 98:2706–2713

    Article  CAS  PubMed  Google Scholar 

  5. Bush TL, Barrett-Connor E (1985) Noncontraceptive estrogen use and cardiovascular disease. Epidemiol Rev 7:89–104

    CAS  PubMed  Google Scholar 

  6. Bush TL, Barrett-Connor E, Cowan LD et al (1987) Cardiovascular mortality and noncontraceptive use of estrogen in women: results from the lipid research clinics program follow-up study. Circulation 75:1102–1109

    CAS  PubMed  Google Scholar 

  7. Capaldo B, Guardasole V, Pardo F et al (2001) Abnormal vascular reactivity in growth hormone deficiency. Circulation 103:520–524

    CAS  PubMed  Google Scholar 

  8. Chataigneau T, Zerr M, Chataigneau M et al (2004) Chronic treatment with progesterone but not medroxyprogesterone acetate restores the endothelial control of vascular tone in the mesenteric artery of ovariectomized rats. Menopause 11:225–263

    Article  Google Scholar 

  9. Chatrath R, Ronningen KL, Severson SR et al (2003) Endothelium- dependent responses in coronary arteries are changed with puberty in male pigs. Am J Physiol: Heart Circ Physiol 285:H1168–H1176

    CAS  Google Scholar 

  10. Clausen P, Mersebach H, Nielsen B et al (2009) Hypothyroidism is associated with signs of endothelial dysfunction despite 1-year replacement therapy with levothyroxine. Clin Endocrinol (Oxf) 70:932–937

    Article  CAS  Google Scholar 

  11. Cox MW, Weiping F, Chai H et al (2005) Effects of progesterone and estrogen on endothelial dysfunction in porcine coronary arteries. J Surg Res 124:104–111

    Article  CAS  PubMed  Google Scholar 

  12. Critchlow V, Liebelt RA, Bar-Sela M et al (1963) Sex difference in resting pituitary-adrenal function in the rat. Am J Physiol 205:807–815

    CAS  PubMed  Google Scholar 

  13. Cusi K, Maezono K, Osman A et al (2000) Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J Clin Invest 105:311–320

    Article  CAS  PubMed  Google Scholar 

  14. Cutini P, Selles J, Massheimer V (2009) Cross-talk between rapid and long term effects of progesterone on vascular tissue. J Steroid Biochem Mol Biol 115:36–43

    Article  CAS  PubMed  Google Scholar 

  15. Deenadayalu VP, White RE, Stallone JN et al (2001) Testosterone relaxes coronary arteries by opening the large-conductance, calcium-activated potassium channel. Am J Physiol: Heart Circ Physiol 281:H1720–H1727

    CAS  Google Scholar 

  16. Duckles SP, Krause DN, Miller VM (1996) Effects of gonadal steroids on vascular function. J Pharmacol Exper Ther 279:1–3

    CAS  Google Scholar 

  17. Duntas LH, Wartofsky L (2007) Cardiovascular risk and subclinical hypothyroidism: focus on lipids and new emerging risk factors. What is the evidence? Thyroid 17:1075–1084

    Article  CAS  PubMed  Google Scholar 

  18. Ellmann S, Sticht H, Thiel F et al (2009) Estrogen and progesterone receptors: from molecular structures to clinical targets. Cell Mol Life Sci 66:2405–2426

    Article  CAS  PubMed  Google Scholar 

  19. Ernster VL, Bush TL, Huggins GR et al (1988) Benefits and risks of menopausal estrogen and/or progestin hormone use. Prev Med 17:201–223

    Article  CAS  PubMed  Google Scholar 

  20. Fisslthaler B, Benzing T, Busse R et al (2003) Insulin enhances the expression of the endothelial nitric oxide synthase in native endothelial cells: a dual role for Akt and AP-1. Nitric Oxide 8:253–261

    Article  CAS  PubMed  Google Scholar 

  21. Forstermann U, Burgwitz K, Frolich JC (1987) Effects of nonsteroidal phospholipase inhibitors and glucocorticoids on endothelium-dependent relaxations of rabbit aorta induced by different agents. J Cardiovasc Pharmacol 10:356–364

    Article  CAS  PubMed  Google Scholar 

  22. Gavin KM, Seals DR, Silver AE et al (2009) Vascular endothelial estrogen receptor alpha is modulated by estrogen status and related to endothelial function and endothelial nitric oxide synthase in healthy women. J Clin Endocrinol Metab 94:3513–3520

    Article  CAS  PubMed  Google Scholar 

  23. Geary GG, Krause DN, Duckles SP (1998) Estrogen reduces myogenic tone through a nitric oxide-dependent mechanism in rat cerebral arteries. Am J Physiol 275:H292–H300

    CAS  PubMed  Google Scholar 

  24. Geary GG, McNeill AM, Ospina JA et al (2001) Selected contribution: cerebrovascular nos and cyclooxygenase are unaffected by estrogen in mice lacking estrogen receptor-alpha. J Appl Physiol 91:2391–2399, discussion 2389-2390

    CAS  PubMed  Google Scholar 

  25. Gerhard M, Walsh BW, Tawakol A et al (1998) Estradiol therapy combined with progesterone and endothelium-dependent vasodilation in postmenopausal women. Circulation 98:1158–1163

    CAS  PubMed  Google Scholar 

  26. Gerhard MD, Tawakol A, Haley EA et al (1996) Long-term estradiol therapy with or without progesterone improves endothelium-dependent vasodilation in postmenopausal women. Circulation 94:I-279

    Google Scholar 

  27. Gisclard V, Miller VM, Vanhoutte PM (1988) Effect of 17β-estradiol on endothelium-dependent responses in the rabbit. J Pharmacol Exper Ther 244:19–22

    CAS  Google Scholar 

  28. Goffin V, Binart N, Touraine P et al (2002) Prolactin: the new biology of an old hormone. Annu Rev Physiol 64:47–67

    Article  CAS  PubMed  Google Scholar 

  29. Gonzales RJ, Ansar S, Duckles SP et al (2007) Androgenic/estrogenic balance in the male rat cerebral circulation: metabolic enzymes and sex steroid receptors. J Cereb Blood Flow Metab 27:1841–1852

    Article  CAS  PubMed  Google Scholar 

  30. Gonzalez C, Corbacho AM, Eiserich JP et al (2004) 16K-prolactin inhibits activation of endothelial nitric oxide synthase, intracellular calcium mobilization, and endothelium-dependent vasorelaxation. Endocrinology 145:5714–5722

    Article  CAS  PubMed  Google Scholar 

  31. Hiroi Y, Kim H, Ying H et al (2006) Rapid nongenomic actions of thyroid hormone. PNAS 103:14104–14109

    Article  CAS  PubMed  Google Scholar 

  32. Hisamoto K, Bender JR (2005) Vascular cell signaling by membrane estrogen receptors. Steroids 70:382–387

    Article  CAS  PubMed  Google Scholar 

  33. Hynes MR, Duckles SP (1987) Effect of increasing age on the endothelium-mediated relaxation of rat blood vessels in vitro. J Pharmacol Exper Ther 241:387–392

    CAS  Google Scholar 

  34. Iuchi T, Akaike M, Mitsui T et al (2003) Glucocorticoid excess induces superoxide production in vascular endothelial cells and elicits vascular endothelial dysfunction. Circ Res 92:81–87

    Article  CAS  PubMed  Google Scholar 

  35. Jankord R, McAllister RM, Ganjam VK et al (2009) Chronic inhibition of nitric oxide synthase augments the ACTH response to exercise. Am J Physiol Regul Integr Comp Physiol 296:R728–R734

    CAS  PubMed  Google Scholar 

  36. Jiang ZY, Lin YW, Clemont A et al (1999) Characterization of selective resistance to insulin signaling in the vasculature of obese Zucker (fa/fa) rats. J Clin Invest 104:447–457

    Article  CAS  PubMed  Google Scholar 

  37. Juan SH, Chen JJ, Chen CH et al (2004) 17beta-estradiol inhibits cyclic strain-induced endothelin-1 gene expression within vascular endothelial cells. Am J Physiol 287:H1254–H1261

    CAS  Google Scholar 

  38. Kaplan JR, Adams MR, Clarkson TB et al (1996) Psychosocial factors, sex differences, and atherosclerosis: lessons from animal models. Psychosom Med 58:598–611

    CAS  PubMed  Google Scholar 

  39. Kimura M, Sudhir K, Jones M et al (2003) Impaired acetylcholine-induced release of nitric oxide in the aorta of male aromatase-knockout mice: regulation of nitric oxide production by endogenous sex hormones in males. Circ Res 93:1267–1271

    Article  CAS  PubMed  Google Scholar 

  40. Knowles RG, Salter M, Brooks SL et al (1990) Anti-inflammatory glucocorticoids inhibit the induction by endotoxin of nitric oxide synthase in the lung, liver and aorta of the rat. Biochem Biophys Res Commun 172:1042–1048

    Article  CAS  PubMed  Google Scholar 

  41. Kuboki K, Jiang ZY, Takahara N et al (2000) Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo: a specific vascular action of insulin. Circulation 101:676–681

    CAS  PubMed  Google Scholar 

  42. Lafuente A, Gonzalez-Carracedo A, Romero A et al (2004) Effect of nitric oxide on prolactin secretion and hypothalamic biogenic amine contents. Life Sci 74:1681–1690

    Article  CAS  PubMed  Google Scholar 

  43. Leavitt WW, Cobb AD, Takeda A (1987) Progesterone-modulation of estrogen action: rapid down regulation of nuclear acceptor sites for the estrogen receptor. Adv Exper Med Biol 230:49–78

    CAS  Google Scholar 

  44. Levin ER (2009) Plasma membrane estrogen receptors. Trends Endocrinol Metab 20:477–482

    Article  CAS  PubMed  Google Scholar 

  45. Levine RL, Chen S-J, Durand J et al (1994) Medroxyprogesterone attenuates estrogen-mediated inhibition of neointima formation after balloon injury of the rat carotid artery. Circulation 94:2221–2227

    Google Scholar 

  46. Lew R, Komesaroff PA, Williams M et al (2003) Endogenous estrogens influence endothelial function in young men. Circ Res 93:1127–1133

    Article  CAS  PubMed  Google Scholar 

  47. Li G, Barrett EJ, Wang H et al (2005) Insulin at physiological concentrations selectively activates insulin but not insulin-like growth factor I (IGF-I) or insulin/IGF-I hybrid receptors in endothelial cells. Endocrinology 146:4690–4696

    Article  CAS  PubMed  Google Scholar 

  48. Li G, Del Rincon JP, Jahn LA et al (2008) Growth hormone exerts acute vascular effects independent of systemic or muscle insulin-like growth factor I. J Clin Endocrinol Metab 93:1379–1385

    Article  CAS  PubMed  Google Scholar 

  49. Liu PY, Death AK, Handelsman DJ (2003) Androgens and cardiovascular disease. Endocr Rev 24:313–340

    Article  CAS  PubMed  Google Scholar 

  50. Liu Y, Mladinov D, Pietrusz JL et al (2009) Glucocorticoid response elements and 11ß-hydroxysteroid dehydrogenases in the regulation of endothelial nitric oxide synthase expression. Cardiovasc Res 81:140–147

    Article  CAS  PubMed  Google Scholar 

  51. Madamanchi NR, Vendrov A, Runge MS (2005) Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 25:29–38

    Article  CAS  PubMed  Google Scholar 

  52. Matsuda K, Ruff A, Morinelli TA et al (1994) Testosterone increases thromboxane A2 receptor density and responsiveness in rat aortas and platelets. Am J Physiol 267:H887–H893

    CAS  PubMed  Google Scholar 

  53. McCredie RJ, McCrohon JA, Turner L et al (1998) Vascular reactivity is impaired in genetic females taking high-dose androgens. J Am Coll Cardiol 32:1331–1335

    Article  CAS  PubMed  Google Scholar 

  54. McNeill AM, Kim N, Duckles SP et al (1999) Chronic estrogen treatment increases levels of endothelial nitric oxide synthase protein in rat cerebral microvessels. Stroke 30:2186–2190

    CAS  PubMed  Google Scholar 

  55. McNeill AM, Zhang C, Stanczyk FZ et al (2002) Estrogen increases endothelial nitric oxide synthase via estrogen receptors in rat cerebral blood vessels, effect preserved after concurrent treatment with medroxyprogesterone acetate or progesterone. Stroke 33:1685–1691

    Article  CAS  PubMed  Google Scholar 

  56. Mendelsohn ME, Rosano GM (2003) Hormonal regulation of normal vascular tone in males. Circ Res 93:1142–1145

    Article  CAS  PubMed  Google Scholar 

  57. Mendiberri J, Rauschemberger MB, Selles J et al (2006) Involvement of phosphoinositide-3-kinase and phospholipase C transduction systems in the non-genomic action of progesterone in vascular tissue. Int J Biochem Cell Biol 38:288–296

    Article  CAS  PubMed  Google Scholar 

  58. Meraji S, Jayakody L, Senaratne MP et al (1987) Endothelium- dependent relaxation in aorta of BB rat. Diabetes 36:978–981

    Article  CAS  PubMed  Google Scholar 

  59. Miller VM, Aarhus LL, Vanhoutte PM (1988) Effects of estrogens on adrenergic and endothelium-dependent responses in the ovarian artery of the rabbit. In: Halpern W, Brayden JE, McLaughlin M, Osol G, Pegram BL, Mackey K (eds) Proceedings of the second international symposium on resistance arteries. Perinatology Press, Ithaca, pp 136–145

    Google Scholar 

  60. Miller VM, Duckles SP (2008) Vascular actions of estrogens: functional implications. Pharmacol Rev 60:210–241

    Article  CAS  PubMed  Google Scholar 

  61. Miller VM, Mulvagh SL (2007) Sex steroids and endothelial function: translating basic science to clinical practice. Trends Pharmacol Sci 28:263–270

    Article  CAS  PubMed  Google Scholar 

  62. Miller VM, Vanhoutte PM (1991) Progesterone and modulation of endothelium-dependent responses in canine coronary arteries. Am J Physiol 261:R1022–R1027

    CAS  PubMed  Google Scholar 

  63. Molinari C, Grossini E, Mary DA et al (2007) Prolactin induces regional vasoconstriction through the beta2-adrenergic and nitric oxide mechanisms. Endocrinology 148:4080–4090

    Article  CAS  PubMed  Google Scholar 

  64. Moreno AS, Franci CR (2004) Estrogen modulates the action of nitric oxide in the medial preoptic area on luteinizing hormone and prolactin secretion. Life Sci 74:2049–2059

    Article  CAS  PubMed  Google Scholar 

  65. Moriarty K, Kim KH, Bender JR (2007) Minireview: estrogen receptor-mediated rapid signaling. Endocrinology 147:5557–5563

    Article  CAS  Google Scholar 

  66. Morimoto K, Morikawa M, Kimura H et al (2008) Mental stress induces sustained elevation of blood pressure and lipid peroxidation in postmenopausal women. Life Sci 82:99–107

    Article  CAS  PubMed  Google Scholar 

  67. Muniyappa R, Montagnani M, Koh KK et al (2007) Cardiovascular actions of insulin. Endocr Rev 28:463–491

    Article  CAS  PubMed  Google Scholar 

  68. Napoli R, Guardasole V, Angelini V et al (2003) Acute effects of growth hormone on vascular function in human subjects. J Clin Endocrinol Metab 88:2817–2820

    Article  CAS  PubMed  Google Scholar 

  69. New G, Timmins KL, Duffy SJ et al (1997) Long-term estrogen therapy improves vascular function in male to female transsexuals. J Am Coll Cardiol 29:1437–1444

    Article  CAS  PubMed  Google Scholar 

  70. Nystrom FH, Quon MJ (1999) Insulin signaling: metabolic pathways and mechanisms for specificity. Cell Signal 11:563–574

    Article  CAS  PubMed  Google Scholar 

  71. Nystrom HC, Klintland N, Caidahl K et al (2005) Short-term administration of growth hormone (GH) lowers blood pressure by activating eNOS/nitric oxide (NO)-pathway in male hypophysectomized (Hx) rats. BMC physiology 5:17

    Article  PubMed  CAS  Google Scholar 

  72. Okano H, Jayachandran M, Yoshikawa A et al (2006) Differential effects of chronic treatment with estrogen receptor ligands on regulation of nitric oxide synthase in porcine aortic endothelial cells. J Cardiovasc Pharmacol 47:621–628

    Article  CAS  PubMed  Google Scholar 

  73. Papaioannou GI, Lagasse M, Mather JF et al (2004) Treating hypothyroidism improves endothelial function. Metab Clin Exp 53:278–279

    CAS  PubMed  Google Scholar 

  74. Park KM, Kim JI, Ahn Y et al (2004) Testosterone is responsible for enhanced susceptibility of males to ischemic renal injury. J Biol Chem 279:52282–52292

    Article  CAS  PubMed  Google Scholar 

  75. Parker KL, Schimmer BP. Chapter 55. pituitary hormones and their hypothalamic releasing hormones. In: Brunton LL, Lazo J, Parker KL (eds) Goodman and Gilman's The Pharmacological Basis of Therapeutics, 11e. McGraw Hill

  76. Pinto VLM, Brunini TMC, Ferraz MR et al (2008) Depression and cardiovascular disease: role of nitric oxide. Cardiovasc Hematol Agents Med Chem 6:142–149

    Article  CAS  PubMed  Google Scholar 

  77. Radomski MW, Palmer RMJ, Moncada S (1990) Glucocorticoids inhibit the expression of an inducible, but not the constitutive, nitric oxide synthase in vascular endothelial cells. Proc Natl Acad Sci USA 87:10043–10047

    Article  CAS  PubMed  Google Scholar 

  78. Ramzy D, Tumiati LC, Tepperman E et al (2008) Dual immunosuppression enhances vasomotor injury: interactive effect between endothelin-1 and nitric oxide bioavailability. J Thorac Cardiovasc Surg 135:938–944

    Article  CAS  PubMed  Google Scholar 

  79. Regitz-Zagrosek V, Lehmkuhl E (2005) Heart failure and its treatment in women. Role of hypertension, diabetes, and estrogen. Herz 30:356–367

    Article  PubMed  Google Scholar 

  80. Roghair RD, Segar JL, Volk KA et al (2009) Vascular nitric oxide and superoxide anion contribute to sex-specific programmed cardiovascular physiology in mice. Am J Physiol Regul Integr Comp Physiol 296:R651–R662

    CAS  PubMed  Google Scholar 

  81. Schini-Kerth VB (1999) Dual effects of insulin-like growth factor-I on the constitutive and inducible nitric oxide (NO) synthase-dependent formation of NO in vascular cells. J Endocrinol Invest 22:82–88

    CAS  PubMed  Google Scholar 

  82. Sherwood A, Hinderliter AL, Watkins LL et al (2005) Impaired endothelial function in coronary heart disease patients with depressive symptomatology. J Am Coll Cardiol 46:656–659

    Article  PubMed  Google Scholar 

  83. Simmons WW, Ungureanu-Longrois D, Smith GK et al (1996) Glucocorticoids regulate inducible nitric oxide synthase by inhibiting tetrahydrobiopterin synthesis and l-arginine transport. J Biol Chem 271:23928–23937

    Article  CAS  PubMed  Google Scholar 

  84. Simoncini T, Mannella P, Fornari L et al (2004) Differential signal transduction of progesterone and medroxyprogesterone acetate in human endothelial cells. Endocrinology 145:5745–5756

    Article  CAS  PubMed  Google Scholar 

  85. Simoncini T, Mannella P, Fornari L et al (2003) Dehydroepiandrosterone modulates endothelial nitric oxide synthesis via direct genomic and nongenomic mechanisms. Endocrinology 144:3449–3455

    Article  CAS  PubMed  Google Scholar 

  86. Sladek SM, Magness RR, Conrad KP (1997) Nitric oxide and pregnancy. Am J Physiol 272:R441–R463

    CAS  PubMed  Google Scholar 

  87. Spieker LE, Flammer AJ, Luscher TF (2006) The vascular endothelium in hypertension. Handb Exp Pharmacol 176:249–283

    Article  CAS  PubMed  Google Scholar 

  88. Steinberg HO, Brechtel G, Johnson A et al (1994) Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J Clin Invest 94:1172–1179

    Article  CAS  PubMed  Google Scholar 

  89. Stirone C, Chu Y, Sunday L et al (2003) 17β-estradiol increases endothelial nitric oxide synthase mRNA copy number in cerebral blood vessels: quantification by real-time polymerase chain reaction. Eur J Pharmacol 478:35–38

    Article  CAS  PubMed  Google Scholar 

  90. Strehlow K, Rotter S, Wassmann S et al (2003) Modulation of antioxidant enzyme expression and function by estrogen. Circ Res 93:170–177

    Article  CAS  PubMed  Google Scholar 

  91. Sudhir K, Chou TM, Chatterjee K et al (1997) Premature coronary artery disease associated with a disruptive mutation in the estrogen receptor gene in a man. Circulation 96:3774–3777

    CAS  PubMed  Google Scholar 

  92. Sudhir K, Chou TM, Messina LM et al (1997) Endothelial dysfunction in a man with disruptive mutation in oestrogen-receptor gene. Lancet 349:1146–1147

    Article  CAS  PubMed  Google Scholar 

  93. Sudhir K, Komesaroff PA (1999) Clinical review 110: cardiovascular actions of estrogens in men. J Clin Endocrinol Metab 84:3411–3415

    Article  CAS  PubMed  Google Scholar 

  94. Sun K, Yang K, Challis JRG (1997) Differential regulation of 11 ß- hydroxysteroid dehydrogenase type 1 and 2 by nitric oxide in cultured human placental trophoblast and chorionic cell preparation. Endocrinology 138:4912–4920

    Article  CAS  PubMed  Google Scholar 

  95. Thum T, Tsikas D, Frolich JC et al (2003) Growth hormone induces eNOS expression and nitric oxide release in a cultured human endothelial cell line. FEBS Lett 555:567–571

    Article  CAS  PubMed  Google Scholar 

  96. Vargas F, Moreno JM, Wangensteen R et al (2007) The endocrine system in chronic nitric oxide deficiency. Eur J Endocrinol 156:1–12

    Article  CAS  PubMed  Google Scholar 

  97. Vollenweider P, Tappy L, Randin D et al (1993) Differential effects of hyperinsulinemia and carbohydrate metabolism on sympathetic nerve activity and muscle blood flow in humans. J Clin Invest 92:147–154

    Article  CAS  PubMed  Google Scholar 

  98. Wakatsuki A, Okatani Y, Ikenoue N et al (2001) Effect of medroxyprogesterone acetate on endothelium-dependent vasodilation in postmenopausal women receiving estrogen. Circulation 104:1773–1778

    Article  CAS  PubMed  Google Scholar 

  99. Welter BH, Hansen EL, Saner KJ et al (2003) Membrane-bound progesterone receptor expression in human aortic endothelial cells. J Histochem Cytochem 51:1049–1055

    CAS  PubMed  Google Scholar 

  100. Whitworth JA, Mangos GJ, Kelly JJ (2000) Cushing, cortisol, and cardiovascular disease. Hypertension 36:912–916

    CAS  PubMed  Google Scholar 

  101. Whitworth JA, Schyvens CG, Zhang Y et al (2002) The nitric oxide system in glucocorticoid-induced hypertension. J Hypertension 20:1035–1043

    Article  CAS  Google Scholar 

  102. Wickman A, Jonsdottir IH, Bergstrom G et al (2002) GH and IGF-I regulate the expression of endothelial nitric oxide synthase (eNOS) in cardiovascular tissues of hypophysectomized female rats. Eur J Endocrinol 147:523–533

    Article  CAS  PubMed  Google Scholar 

  103. Yang EH, Lerman S, Lennon RJ et al (2007) Relation of depression to coronary endothelial function. Am J Cardiol 99:1134–1136

    Article  CAS  PubMed  Google Scholar 

  104. Yang S, Zhang L (2004) Glucocorticoids and vascular reactivity. Curr Vasc Pharmacol 2:1–12

    Article  PubMed  Google Scholar 

  105. Zerr-Fouineau M, Chataigneau M, Blot C et al (2007) Progestins overcome inhibition of platelet aggregation by endothelial cells by down-regulating endothelial NO synthase via glucocorticoid receptors. FASEB J 21:265–273

    Article  CAS  PubMed  Google Scholar 

  106. Zerr-Fouineau M, Jourdain M, Boesch C et al (2009) Certain progestins prevent the enhancing effect of 17beta-estrqdiol on NO-mediated inhibition of platelet aggregation by endothelial cells. Arterioscler Thromb Vasc Biol 29:586–593

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health Grants HL-50775 (to SPD) and HL-51736 (to VMM), the Kronos Longevity Research Institute, and the Mayo Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sue P. Duckles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duckles, S.P., Miller, V.M. Hormonal modulation of endothelial NO production. Pflugers Arch - Eur J Physiol 459, 841–851 (2010). https://doi.org/10.1007/s00424-010-0797-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-010-0797-1

Keywords

Navigation