Skip to main content
Log in

Cl channels in smooth muscle cells

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

A Publisher's Erratum to this article was published on 16 April 2014

Abstract

In smooth muscle cells (SMCs), the intracellular chloride ion (Cl) concentration is high due to accumulation by Cl/HCO3 exchange and Na+–K+–Cl cotransportation. The equilibrium potential for Cl (E Cl) is more positive than physiological membrane potentials (E m), with Cl efflux inducing membrane depolarization. Early studies used electrophysiology and nonspecific antagonists to study the physiological relevance of Cl channels in SMCs. More recent reports have incorporated molecular biological approaches to identify and determine the functional significance of several different Cl channels. Both “classic” and cGMP-dependent calcium (Ca2+)-activated (ClCa) channels and volume-sensitive Cl channels are present, with TMEM16A/ANO1, bestrophins, and ClC-3, respectively, proposed as molecular candidates for these channels. The cystic fibrosis transmembrane conductance regulator (CFTR) has also been described in SMCs. This review will focus on discussing recent progress made in identifying each of these Cl channels in SMCs, their physiological functions, and contribution to diseases that modify contraction, apoptosis, and cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aickin CC, Vermue NA (1983) Microelectrode measurement of intracellular chloride activity in smooth muscle cells of guinea-pig ureter. Pflugers Arch 397:25–28

    PubMed  CAS  Google Scholar 

  2. Amedee T, Large WA, Wang Q (1990) Characteristics of chloride currents activated by noradrenaline in rabbit ear artery cells. J Physiol 428:501–516

    PubMed Central  PubMed  CAS  Google Scholar 

  3. Arreola J, Begenisich T, Nehrke K, Nguyen HV, Park K, Richardson L, Yang B, Schutte BC, Lamb FS, Melvin JE (2002) Secretion and cell volume regulation by salivary acinar cells from mice lacking expression of the Clcn3 Cl − channel gene. J Physiol 545:207–216

    PubMed Central  PubMed  CAS  Google Scholar 

  4. Barro SR, Spitzner M, Schreiber R, Kunzelmann K (2009) Bestrophin-1 enables Ca2 + -activated Cl − conductance in epithelia. J Biol Chem 284:29405–29412

    Google Scholar 

  5. Boedtkjer DM, Matchkov VV, Boedtkjer E, Nilsson H, Aalkjaer C (2008) Vasomotion has chloride-dependency in rat mesenteric small arteries. Pflugers Arch 457:389–404

    PubMed  Google Scholar 

  6. Brayden JE, Nelson MT (1992) Regulation of arterial tone by activation of calcium-dependent potassium channels. Science 256:532–535

    PubMed  CAS  Google Scholar 

  7. Brenner R, Perez GJ, Bonev AD, Eckman DM, Kosek JC, Wiler SW, Patterson AJ, Nelson MT, Aldrich RW (2000) Vasoregulation by the beta1 subunit of the calcium-activated potassium channel. Nature 407:870–876

    PubMed  CAS  Google Scholar 

  8. Broegger T, Jacobsen JC, Secher DV, Boedtkjer DM, Kold-Petersen H, Pedersen FS, Aalkjaer C, Matchkov VV (2011) Bestrophin is important for the rhythmic but not the tonic contraction in rat mesenteric small arteries. Cardiovasc Res 91:685–693

    PubMed  CAS  Google Scholar 

  9. Bulley S, Neeb ZP, Burris SK, Bannister JP, Thomas-Gatewood CM, Jangsangthong W, Jaggar JH (2012) TMEM16A/ANO1 channels contribute to the myogenic response in cerebral arteries. Circ Res 111:1027–1036

    PubMed Central  PubMed  CAS  Google Scholar 

  10. Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O, Galietta LJ (2008) TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322:590–594

    PubMed  CAS  Google Scholar 

  11. Casteels R, Kitamura K, Kuriyama H, Suzuki H (1977) The membrane properties of the smooth muscle cells of the rabbit main pulmonary artery. J Physiol 271:41–61

    PubMed Central  PubMed  CAS  Google Scholar 

  12. Cheng G, Kim MJ, Jia G, Agrawal DK (2007) Involvement of chloride channels in IGF-I-induced proliferation of porcine arterial smooth muscle cells. Cardiovasc Res 73:198–207

    PubMed Central  PubMed  CAS  Google Scholar 

  13. Chien LT, Zhang ZR, Hartzell HC (2006) Single Cl − channels activated by Ca2+ in Drosophila S2 cells are mediated by bestrophins. J Gen Physiol 128:247–259

    PubMed Central  PubMed  CAS  Google Scholar 

  14. Chipperfield AR, Harper AA (2000) Chloride in smooth muscle. Prog Biophys Mol Biol 74:175–221

    PubMed  CAS  Google Scholar 

  15. Chu X, Filali M, Stanic B, Takapoo M, Sheehan A, Bhalla R, Lamb FS, Miller FJ Jr (2011) A critical role for chloride channel-3 (CIC-3) in smooth muscle cell activation and neointima formation. Arterioscler Thromb Vasc Biol 31:345–351

    PubMed Central  PubMed  CAS  Google Scholar 

  16. Criddle DN, de Moura RS, Greenwood IA, Large WA (1996) Effect of niflumic acid on noradrenaline-induced contractions of the rat aorta. Br J Pharmacol 118:1065–1071

    PubMed Central  PubMed  CAS  Google Scholar 

  17. Criddle DN, de Moura RS, Greenwood IA, Large WA (1997) Inhibitory action of niflumic acid on noradrenaline- and 5-hydroxytryptamine-induced pressor responses in the isolated mesenteric vascular bed of the rat. Br J Pharmacol 120:813–818

    PubMed Central  PubMed  CAS  Google Scholar 

  18. Dai YP, Bongalon S, Hatton WJ, Hume JR, Yamboliev IA (2005) ClC-3 chloride channel is upregulated by hypertrophy and inflammation in rat and canine pulmonary artery. Br J Pharmacol 145:5–14

    PubMed Central  PubMed  CAS  Google Scholar 

  19. Dai Y, Zhang JH (2001) Role of Cl − current in endothelin-1-induced contraction in rabbit basilar artery. Am J Physiol Heart Circ Physiol 281:H2159–H2167

    PubMed  CAS  Google Scholar 

  20. Dai Y, Zhang JH (2002) Manipulation of chloride flux affects histamine-induced contraction in rabbit basilar artery. Am J Physiol Heart Circ Physiol 282:H1427–H1436

    PubMed  CAS  Google Scholar 

  21. Davis AJ, Forrest AS, Jepps TA, Valencik ML, Wiwchar M, Singer CA, Sones WR, Greenwood IA, Leblanc N (2010) Expression profile and protein translation of TMEM16A in murine smooth muscle. Am J Physiol Cell Physiol 299:C948–C959

    PubMed Central  PubMed  CAS  Google Scholar 

  22. Davis AJ, Shi J, Pritchard HA, Chadha PS, Leblanc N, Vasilikostas G, Yao Z, Verkman AS, Albert AP, Greenwood IA (2013) Potent vasorelaxant activity of the TMEM16A inhibitor T16A(inh) -A01. Br J Pharmacol 168:773–784

    PubMed Central  PubMed  CAS  Google Scholar 

  23. Day RM, Agyeman AS, Segel MJ, Chevere RD, Angelosanto JM, Suzuki YJ, Fanburg BL (2006) Serotonin induces pulmonary artery smooth muscle cell migration. Biochem Pharmacol 71:386–397

    PubMed Central  PubMed  CAS  Google Scholar 

  24. De Lisle RC, Meldi L, Mueller R (2012) Intestinal smooth muscle dysfunction develops postnatally in cystic fibrosis mice. J Pediatr Gastroenterol Nutr 55:689–694

    PubMed Central  PubMed  Google Scholar 

  25. Dick GM, Bradley KK, Horowitz B, Hume JR, Sanders KM (1998) Functional and molecular identification of a novel chloride conductance in canine colonic smooth muscle. Am J Physiol 275:C940–C950

    PubMed  CAS  Google Scholar 

  26. Droogmans G, Callewaert G, Declerck I, Casteels R (1991) ATP-induced Ca2+ release and Cl − current in cultured smooth muscle cells from pig aorta. J Physiol 440:623–634

    PubMed Central  PubMed  CAS  Google Scholar 

  27. Duan DD (2011) The ClC-3 chloride channels in cardiovascular disease. Acta Pharmacol Sin 32:675–684

    PubMed Central  PubMed  CAS  Google Scholar 

  28. Duan D, Winter C, Cowley S, Hume JR, Horowitz B (1997) Molecular identification of a volume-regulated chloride channel. Nature 390:417–421

    PubMed  CAS  Google Scholar 

  29. Duan D, Zhong J, Hermoso M, Satterwhite CM, Rossow CF, Hatton WJ, Yamboliev I, Horowitz B, Hume JR (2001) Functional inhibition of native volume-sensitive outwardly rectifying anion channels in muscle cells and Xenopus oocytes by anti-ClC-3 antibody. J Physiol 531:437–444

    PubMed Central  PubMed  CAS  Google Scholar 

  30. Duran C, Thompson CH, Xiao Q, Hartzell HC (2010) Chloride channels: often enigmatic, rarely predictable. Annu Rev Physiol 72:95–121

    PubMed Central  PubMed  CAS  Google Scholar 

  31. Eggermont J, Trouet D, Carton I, Nilius B (2001) Cellular function and control of volume-regulated anion channels. Cell Biochem Biophys 35:263–274

    PubMed  CAS  Google Scholar 

  32. Forrest AS, Joyce TC, Huebner ML, Ayon RJ, Wiwchar M, Joyce J, Freitas N, Davis AJ, Ye L, Duan DD, Singer CA, Valencik ML, Greenwood IA, Leblanc N (2012) Increased TMEM16A-encoded calcium-activated chloride channel activity is associated with pulmonary hypertension. Am J Physiol Cell Physiol 303:C1229–C1243

    PubMed Central  PubMed  CAS  Google Scholar 

  33. Friedrich T, Breiderhoff T, Jentsch TJ (1999) Mutational analysis demonstrates that ClC-4 and ClC-5 directly mediate plasma membrane currents. J Biol Chem 274:896–902

    PubMed  CAS  Google Scholar 

  34. Fu J, Fu J, Gao B, Wang L, Zhang N, Li X, Ji Q (2010) Expression patterns of ClC-3 mRNA and protein in aortic smooth muscle, kidney and brain in diabetic rats. Clin Invest Med 33:E146–E154

    PubMed  CAS  Google Scholar 

  35. Gadsby DC, Nairn AC (1999) Regulation of CFTR Cl − ion channels by phosphorylation and dephosphorylation. Adv Second Messenger Phosphoprotein Res 33:79–106

    PubMed  CAS  Google Scholar 

  36. Ganapathi SB, Wei SG, Zaremba A, Lamb FS, Shears SB (2013) Functional regulation of ClC-3 in the migration of vascular smooth muscle cells. Hypertension 61:174–179

    PubMed Central  PubMed  CAS  Google Scholar 

  37. Gokina NI, Bevan JA (2000) Histamine-induced depolarization: ionic mechanisms and role in sustained contraction of rabbit cerebral arteries. Am J Physiol Heart Circ Physiol 278:H2094–H2104

    PubMed  CAS  Google Scholar 

  38. Gomez-Pinilla PJ, Gibbons SJ, Bardsley MR, Lorincz A, Pozo MJ, Pasricha PJ, Van de Rijn M, West RB, Sarr MG, Kendrick ML, Cima RR, Dozois EJ, Larson DW, Ordog T, Farrugia G (2009) Ano1 is a selective marker of interstitial cells of Cajal in the human and mouse gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 296:G1370–G1381

    PubMed Central  PubMed  CAS  Google Scholar 

  39. Gong W, Xu H, Shimizu T, Morishima S, Tanabe S, Tachibe T, Uchida S, Sasaki S, Okada Y (2004) ClC-3-independent, PKC-dependent activity of volume-sensitive Cl channel in mouse ventricular cardiomyocytes. Cell Physiol Biochem 14:213–224

    PubMed  CAS  Google Scholar 

  40. Greenwood IA, Helliwell RM, Large WA (1997) Modulation of Ca(2+)-activated Cl − currents in rabbit portal vein smooth muscle by an inhibitor of mitochondrial Ca2+ uptake. J Physiol 505(Pt 1):53–64

    PubMed Central  PubMed  CAS  Google Scholar 

  41. Greenwood IA, Large WA (1999) Modulation of the decay of Ca2 + -activated Cl − currents in rabbit portal vein smooth muscle cells by external anions. J Physiol 516(Pt 2):365–376

    PubMed Central  PubMed  CAS  Google Scholar 

  42. Guan YY, Wang GL, Zhou JG (2006) The ClC-3 Cl − channel in cell volume regulation, proliferation and apoptosis in vascular smooth muscle cells. Trends Pharmacol Sci 27:290–296

    PubMed  CAS  Google Scholar 

  43. Hara-Chikuma M, Yang B, Sonawane ND, Sasaki S, Uchida S, Verkman AS (2005) ClC-3 chloride channels facilitate endosomal acidification and chloride accumulation. J Biol Chem 280:1241–1247

    PubMed  CAS  Google Scholar 

  44. Harder DR (1984) Pressure-dependent membrane depolarization in cat middle cerebral artery. Circ Res 55:197–202

    PubMed  CAS  Google Scholar 

  45. Hartzell C, Putzier I, Arreola J (2005) Calcium-activated chloride channels. Annu Rev Physiol 67:719–758

    PubMed  CAS  Google Scholar 

  46. Hill MA, Zou H, Potocnik SJ, Meininger GA, Davis MJ (2001) Invited review: arteriolar smooth muscle mechanotransduction: Ca(2+) signaling pathways underlying myogenic reactivity. J Appl Physiol 91:973–983

    PubMed  CAS  Google Scholar 

  47. Hodgkin AL, Horowicz P (1959) The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol 148:127–160

    PubMed Central  PubMed  CAS  Google Scholar 

  48. Hogg RC, Wang Q, Large WA (1994) Effects of Cl channel blockers on Ca-activated chloride and potassium currents in smooth muscle cells from rabbit portal vein. Br J Pharmacol 111:1333–1341

    PubMed Central  PubMed  CAS  Google Scholar 

  49. Huang F, Rock JR, Harfe BD, Cheng T, Huang X, Jan YN, Jan LY (2009) Studies on expression and function of the TMEM16A calcium-activated chloride channel. Proc Natl Acad Sci U S A 106:21413–21418

    PubMed Central  PubMed  CAS  Google Scholar 

  50. Huang F, Zhang H, Wu M, Yang H, Kudo M, Peters CJ, Woodruff PG, Solberg OD, Donne ML, Huang X, Sheppard D, Fahy JV, Wolters PJ, Hogan BL, Finkbeiner WE, Li M, Jan YN, Jan LY, Rock JR (2012) Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction. Proc Natl Acad Sci U S A 109:16354–16359

    PubMed Central  PubMed  CAS  Google Scholar 

  51. Hume JR, Leblanc N (1989) Macroscopic K + currents in single smooth muscle cells of the rabbit portal vein. J Physiol 413:49–73

    PubMed Central  PubMed  CAS  Google Scholar 

  52. Hwang SJ, Blair PJ, Britton FC, O'Driscoll KE, Hennig G, Bayguinov YR, Rock JR, Harfe BD, Sanders KM, Ward SM (2009) Expression of anoctamin 1/TMEM16A by interstitial cells of Cajal is fundamental for slow wave activity in gastrointestinal muscles. J Physiol 587:4887–4904

    PubMed Central  PubMed  CAS  Google Scholar 

  53. Jaggar JH, Porter VA, Lederer WJ, Nelson MT (2000) Calcium sparks in smooth muscle. Am J Physiol Cell Physiol 278:C235–C256

    PubMed  CAS  Google Scholar 

  54. Jentsch TJ, Friedrich T, Schriever A, Yamada H (1999) The CLC chloride channel family. Pflugers Arch 437:783–795

    PubMed  CAS  Google Scholar 

  55. Jiang L, Liu Y, Ma MM, Tang YB, Zhou JG, Guan YY (2013) Mitochondria dependent pathway is involved in the protective effect of bestrophin-3 on hydrogen peroxide-induced apoptosis in basilar artery smooth muscle cells. Apoptosis 18:556–565

    PubMed  CAS  Google Scholar 

  56. Kang XL, Zhang M, Liu J, Lv XF, Tang YB, Guan YY (2012) Differences between femoral artery and vein smooth muscle cells in volume-regulated chloride channels. Can J Physiol Pharmacol 90:1516–1526

    PubMed  CAS  Google Scholar 

  57. Kitamura K, Yamazaki J (2001) Chloride channels and their functional roles in smooth muscle tone in the vasculature. Jpn J Pharmacol 85:351–357

    PubMed  CAS  Google Scholar 

  58. Klockner U (1993) Intracellular calcium ions activate a low-conductance chloride channel in smooth-muscle cells isolated from human mesenteric artery. Pflugers Arch 424:231–237

    PubMed  CAS  Google Scholar 

  59. Klockner U, Isenberg G (1991) Endothelin depolarizes myocytes from porcine coronary and human mesenteric arteries through a Ca-activated chloride current. Pflugers Arch 418:168–175

    PubMed  CAS  Google Scholar 

  60. Kunzelmann K, Allert N, Kubitz R, Breuer WV, Cabantchik ZI, Normann C, Schumann S, Leipziger J, Greger R (1994) Forskolin and PMA pretreatment of HT29 cells alters their chloride conductance induced by cAMP, Ca2+ and hypotonic cell swelling. Pflugers Arch 428:76–83

    PubMed  CAS  Google Scholar 

  61. Kunzelmann K, Milenkovic VM, Spitzner M, Soria RB, Schreiber R (2007) Calcium-dependent chloride conductance in epithelia: is there a contribution by Bestrophin? Pflugers Arch 454:879–889

    PubMed  CAS  Google Scholar 

  62. Lamb FS, Barna TJ (1998) Chloride ion currents contribute functionally to norepinephrine-induced vascular contraction. Am J Physiol 275:H151–H160

    PubMed  CAS  Google Scholar 

  63. Lamb FS, Clayton GH, Liu BX, Smith RL, Barna TJ, Schutte BC (1999) Expression of CLCN voltage-gated chloride channel genes in human blood vessels. J Mol Cell Cardiol 31:657–666

    PubMed  CAS  Google Scholar 

  64. Lamb FS, Volk KA, Shibata EF (1994) Calcium-activated chloride current in rabbit coronary artery myocytes. Circ Res 75:742–750

    PubMed  CAS  Google Scholar 

  65. Large WA, Wang Q (1996) Characteristics and physiological role of the Ca(2+)-activated Cl − conductance in smooth muscle. Am J Physiol 271:C435–C454

    PubMed  CAS  Google Scholar 

  66. Leblanc N, Ledoux J, Saleh S, Sanguinetti A, Angermann J, O'Driscoll K, Britton F, Perrino BA, Greenwood IA (2005) Regulation of calcium-activated chloride channels in smooth muscle cells: a complex picture is emerging. Can J Physiol Pharmacol 83:541–556

    PubMed  CAS  Google Scholar 

  67. Lee WK, Chakraborty PK, Roussa E, Wolff NA, Thevenod F (2012) ERK1/2-dependent bestrophin-3 expression prevents ER-stress-induced cell death in renal epithelial cells by reducing CHOP. Biochim Biophys Acta 1823:1864–1876

    PubMed  CAS  Google Scholar 

  68. Lee SY, Lee CO (2005) Inhibition of Na + –K + pump and L-type Ca2+ channel by glibenclamide in guinea pig ventricular myocytes. J Pharmacol Exp Ther 312:61–68

    PubMed  CAS  Google Scholar 

  69. Li X, Shimada K, Showalter LA, Weinman SA (2000) Biophysical properties of ClC-3 differentiate it from swelling-activated chloride channels in Chinese hamster ovary-K1 cells. J Biol Chem 275:35994–35998

    PubMed  CAS  Google Scholar 

  70. Liang W, Ray JB, He JZ, Backx PH, Ward ME (2009) Regulation of proliferation and membrane potential by chloride currents in rat pulmonary artery smooth muscle cells. Hypertension 54:286–293

    PubMed  CAS  Google Scholar 

  71. Ma Z, Qi J, Fu Z, Ling M, Li L, Zhang Y (2013) Protective role of acidic pH-activated chloride channel in severe acidosis-induced contraction from the aorta of spontaneously hypertensive rats. PLoS One 8:e61018

    PubMed Central  PubMed  CAS  Google Scholar 

  72. Manoury B, Tamuleviciute A, Tammaro P (2010) TMEM16A/anoctamin 1 protein mediates calcium-activated chloride currents in pulmonary arterial smooth muscle cells. J Physiol 588:2305–2314

    PubMed Central  PubMed  CAS  Google Scholar 

  73. Matchkov VV, Aalkjaer C, Nilsson H (2004) A cyclic GMP-dependent calcium-activated chloride current in smooth-muscle cells from rat mesenteric resistance arteries. J Gen Physiol 123:121–134

    PubMed Central  PubMed  CAS  Google Scholar 

  74. Matchkov VV, Aalkjaer C, Nilsson H (2005) Distribution of cGMP-dependent and cGMP-independent Ca(2+)-activated Cl(−) conductances in smooth muscle cells from different vascular beds and colon. Pflugers Arch 451:371–379

    PubMed  CAS  Google Scholar 

  75. Matchkov VV, Larsen P, Bouzinova EV, Rojek A, Boedtkjer DM, Golubinskaya V, Pedersen FS, Aalkjaer C, Nilsson H (2008) Bestrophin-3 (vitelliform macular dystrophy 2-like 3 protein) is essential for the cGMP-dependent calcium-activated chloride conductance in vascular smooth muscle cells. Circ Res 103:864–872

    PubMed  CAS  Google Scholar 

  76. Matsuda JJ, Filali MS, Moreland JG, Miller FJ, Lamb FS (2010) Activation of swelling-activated chloride current by tumor necrosis factor-alpha requires ClC-3-dependent endosomal reactive oxygen production. J Biol Chem 285:22864–22873

    PubMed Central  PubMed  CAS  Google Scholar 

  77. Meissner A, Yang J, Kroetsch JT, Sauve M, Dax H, Momen A, Noyan-Ashraf MH, Heximer S, Husain M, Lidington D, Bolz SS (2012) Tumor necrosis factor-alpha-mediated downregulation of the cystic fibrosis transmembrane conductance regulator drives pathological sphingosine-1-phosphate signaling in a mouse model of heart failure. Circulation 125:2739–2750

    PubMed  CAS  Google Scholar 

  78. Michoud MC, Robert R, Hassan M, Moynihan B, Haston C, Govindaraju V, Ferraro P, Hanrahan JW, Martin JG (2009) Role of the cystic fibrosis transmembrane conductance channel in human airway smooth muscle. Am J Respir Cell Mol Biol 40:217–222

    PubMed  CAS  Google Scholar 

  79. Milenkovic VM, Langmann T, Schreiber R, Kunzelmann K, Weber BH (2008) Molecular evolution and functional divergence of the bestrophin protein family. BMC Evol Biol 8:72

    PubMed Central  PubMed  Google Scholar 

  80. Miller FJ Jr, Filali M, Huss GJ, Stanic B, Chamseddine A, Barna TJ, Lamb FS (2007) Cytokine activation of nuclear factor kappa B in vascular smooth muscle cells requires signaling endosomes containing Nox1 and ClC-3. Circ Res 101:663–671

    PubMed  CAS  Google Scholar 

  81. Mizuta K, Xu D, Pan Y, Comas G, Sonett JR, Zhang Y, Panettieri RA Jr, Yang J, Emala CW Sr (2008) GABAA receptors are expressed and facilitate relaxation in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 294:L1206–L1216

    PubMed Central  PubMed  CAS  Google Scholar 

  82. Namkung W, Yao Z, Finkbeiner WE, Verkman AS (2011) Small-molecule activators of TMEM16A, a calcium-activated chloride channel, stimulate epithelial chloride secretion and intestinal contraction. FASEB J 25:4048–4062

    PubMed Central  PubMed  CAS  Google Scholar 

  83. Neild TO, Keef K (1985) Measurements of the membrane potential of arterial smooth muscle in anesthetized animals and its relationship to changes in artery diameter. Microvasc Res 30:19–28

    PubMed  CAS  Google Scholar 

  84. Nelson MT, Conway MA, Knot HJ, Brayden JE (1997) Chloride channel blockers inhibit myogenic tone in rat cerebral arteries. J Physiol 502(Pt 2):259–264

    PubMed Central  PubMed  CAS  Google Scholar 

  85. Nelson MT, Patlak JB, Worley JF, Standen NB (1990) Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am J Physiol 259:C3–C18

    PubMed  CAS  Google Scholar 

  86. Nelson MT, Quayle JM (1995) Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol 268:C799–C822

    PubMed  CAS  Google Scholar 

  87. Nilius B, Prenen J, Szucs G, Wei L, Tanzi F, Voets T, Droogmans G (1997) Calcium-activated chloride channels in bovine pulmonary artery endothelial cells. J Physiol 498(Pt 2):381–396

    PubMed Central  PubMed  CAS  Google Scholar 

  88. O'Driscoll KE, Hatton WJ, Burkin HR, Leblanc N, Britton FC (2008) Expression, localization, and functional properties of Bestrophin 3 channel isolated from mouse heart. Am J Physiol Cell Physiol 295:C1610–C1624

    PubMed Central  PubMed  Google Scholar 

  89. Ogura T, Furukawa T, Toyozaki T, Yamada K, Zheng YJ, Katayama Y, Nakaya H, Inagaki N (2002) ClC-3B, a novel ClC-3 splicing variant that interacts with EBP50 and facilitates expression of CFTR-regulated ORCC. FASEB J 16:863–865

    PubMed  CAS  Google Scholar 

  90. Owen NE (1984) Regulation of Na/K/Cl cotransport in vascular smooth muscle cells. Biochem Biophys Res Commun 125:500–508

    PubMed  CAS  Google Scholar 

  91. Pacaud P, Loirand G, Gregoire G, Mironneau C, Mironneau J (1992) Calcium-dependence of the calcium-activated chloride current in smooth muscle cells of rat portal vein. Pflugers Arch 421:125–130

    PubMed  CAS  Google Scholar 

  92. Pacaud P, Loirand G, Mironneau C, Mironneau J (1989) Noradrenaline activates a calcium-activated chloride conductance and increases the voltage-dependent calcium current in cultured single cells of rat portal vein. Br J Pharmacol 97:139–146

    PubMed Central  PubMed  CAS  Google Scholar 

  93. Peng H, Matchkov V, Ivarsen A, Aalkjaer C, Nilsson H (2001) Hypothesis for the initiation of vasomotion. Circ Res 88:810–815

    PubMed  CAS  Google Scholar 

  94. Piper AS, Large WA (2004) Single cGMP-activated Ca(+)-dependent Cl(−) channels in rat mesenteric artery smooth muscle cells. J Physiol 555:397–408

    PubMed Central  PubMed  CAS  Google Scholar 

  95. Qian JS, Pang RP, Zhu KS, Liu DY, Li ZR, Deng CY, Wang SM (2009) Static pressure promotes rat aortic smooth muscle cell proliferation via upregulation of volume-regulated chloride channel. Cell Physiol Biochem 24:461–470

    PubMed  CAS  Google Scholar 

  96. Qu Z, Cui Y, Hartzell C (2006) A short motif in the C-terminus of mouse bestrophin 3 [corrected] inhibits its activation as a Cl channel. FEBS Lett 580:2141–2146

    PubMed  CAS  Google Scholar 

  97. Qu Z, Wei RW, Mann W, Hartzell HC (2003) Two bestrophins cloned from Xenopus laevis oocytes express Ca(2+)-activated Cl(−) currents. J Biol Chem 278:49563–49572

    PubMed  CAS  Google Scholar 

  98. Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073

    PubMed  CAS  Google Scholar 

  99. Risse PA, Kachmar L, Matusovsky OS, Novali M, Gil FR, Javeshghani S, Keary R, Haston CK, Michoud MC, Martin JG, Lauzon AM (2012) Ileal smooth muscle dysfunction and remodeling in cystic fibrosis. Am J Physiol Gastrointest Liver Physiol 303:G1–G8

    PubMed  CAS  Google Scholar 

  100. Robert R, Norez C, Becq F (2005) Disruption of CFTR chloride channel alters mechanical properties and cAMP-dependent Cl − transport of mouse aortic smooth muscle cells. J Physiol 568:483–495

    PubMed Central  PubMed  CAS  Google Scholar 

  101. Robert R, Savineau JP, Norez C, Becq F, Guibert C (2007) Expression and function of cystic fibrosis transmembrane conductance regulator in rat intrapulmonary arteries. Eur Respir J 30:857–864

    PubMed  CAS  Google Scholar 

  102. Robert R, Thoreau V, Norez C, Cantereau A, Kitzis A, Mettey Y, Rogier C, Becq F (2004) Regulation of the cystic fibrosis transmembrane conductance regulator channel by beta-adrenergic agonists and vasoactive intestinal peptide in rat smooth muscle cells and its role in vasorelaxation. J Biol Chem 279:21160–21168

    PubMed  CAS  Google Scholar 

  103. Sancho M, Garcia-Pascual A, Triguero D (2012) Presence of the Ca2 + -activated chloride channel anoctamin 1 in the urethra and its role in excitatory neurotransmission. Am J Physiol Ren Physiol 302:F390–F400

    CAS  Google Scholar 

  104. Sanders KM, Koh SD, Ward SM (2006) Interstitial cells of cajal as pacemakers in the gastrointestinal tract. Annu Rev Physiol 68:307–343

    PubMed  CAS  Google Scholar 

  105. Schroeder BC, Cheng T, Jan YN, Jan LY (2008) Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 134:1019–1029

    PubMed Central  PubMed  CAS  Google Scholar 

  106. Scudieri P, Sondo E, Caci E, Ravazzolo R, Galietta LJ (2013) TMEM16A–TMEM16B chimaeras to investigate the structure-function relationship of calcium-activated chloride channels. Biochem J 452:443–455

    PubMed  CAS  Google Scholar 

  107. Shi XL, Wang GL, Zhang Z, Liu YJ, Chen JH, Zhou JG, Qiu QY, Guan YY (2007) Alteration of volume-regulated chloride movement in rat cerebrovascular smooth muscle cells during hypertension. Hypertension 49:1371–1377

    PubMed  CAS  Google Scholar 

  108. Smith JM, Jones AW (1985) Calcium-dependent fluxes of potassium-42 and chloride-36 during norepinephrine activation of rat aorta. Circ Res 56:507–516

    PubMed  CAS  Google Scholar 

  109. Steinmeyer K, Schwappach B, Bens M, Vandewalle A, Jentsch TJ (1995) Cloning and functional expression of rat CLC-5, a chloride channel related to kidney disease. J Biol Chem 270:31172–31177

    PubMed  CAS  Google Scholar 

  110. Stobrawa SM, Breiderhoff T, Takamori S, Engel D, Schweizer M, Zdebik AA, Bosl MR, Ruether K, Jahn H, Draguhn A, Jahn R, Jentsch TJ (2001) Disruption of ClC-3, a chloride channel expressed on synaptic vesicles, leads to a loss of the hippocampus. Neuron 29:185–196

    PubMed  CAS  Google Scholar 

  111. Sun H, Tsunenari T, Yau KW, Nathans J (2002) The vitelliform macular dystrophy protein defines a new family of chloride channels. Proc Natl Acad Sci U S A 99:4008–4013

    PubMed Central  PubMed  CAS  Google Scholar 

  112. Sun H, Xia Y, Paudel O, Yang XR, Sham JS (2012) Chronic hypoxia-induced upregulation of Ca2 + -activated Cl − channel in pulmonary arterial myocytes: a mechanism contributing to enhanced vasoreactivity. J Physiol 590:3507–3521

    PubMed Central  PubMed  CAS  Google Scholar 

  113. Suzuki M, Mizuno A (2004) A novel human Cl(-) channel family related to Drosophila flightless locus. J Biol Chem 279:22461–22468

    PubMed  CAS  Google Scholar 

  114. Takenaka T, Epstein M, Forster H, Landry DW, Iijima K, Goligorsky MS (1992) Attenuation of endothelin effects by a chloride channel inhibitor, indanyloxyacetic acid. Am J Physiol 262:F799–F806

    PubMed  CAS  Google Scholar 

  115. Tang YB, Liu YJ, Zhou JG, Wang GL, Qiu QY, Guan YY (2008) Silence of ClC-3 chloride channel inhibits cell proliferation and the cell cycle via G/S phase arrest in rat basilar arterial smooth muscle cells. Cell Prolif 41:775–785

    PubMed  CAS  Google Scholar 

  116. Taniguchi J, Furukawa KI, Shigekawa M (1993) Maxi K + channels are stimulated by cyclic guanosine monophosphate-dependent protein kinase in canine coronary artery smooth muscle cells. Pflugers Arch 423:167–172

    PubMed  CAS  Google Scholar 

  117. Thomas-Gatewood C, Neeb ZP, Bulley S, Adebiyi A, Bannister JP, Leo MD, Jaggar JH (2011) TMEM16A channels generate Ca(2)(+)-activated Cl(−) currents in cerebral artery smooth muscle cells. Am J Physiol Heart Circ Physiol 301:H1819–H1827

    PubMed Central  PubMed  CAS  Google Scholar 

  118. Thorneloe KS, Nelson MT (2004) Properties of a tonically active, sodium-permeable current in mouse urinary bladder smooth muscle. Am J Physiol Cell Physiol 286:C1246–C1257

    PubMed  CAS  Google Scholar 

  119. Tousson A, Van Tine BA, Naren AP, Shaw GM, Schwiebert LM (1998) Characterization of CFTR expression and chloride channel activity in human endothelia. Am J Physiol 275:C1555–C1564

    PubMed  CAS  Google Scholar 

  120. Uchida R, Nishijima H, Yamazaki J, Shimamura K, Kitamura K (1990) Effects of Cl channel blockers on the contractions recorded in the rabbit basilar artery. Jpn J Pharmacol 79(Suppl I):210

    Google Scholar 

  121. Van RC, Lazdunski M (1993) Endothelin and vasopressin activate low conductance chloride channels in aortic smooth muscle cells. Pflugers Arch 425:156–163

    Google Scholar 

  122. Vandebrouck C, Melin P, Norez C, Robert R, Guibert C, Mettey Y, Becq F (2006) Evidence that CFTR is expressed in rat tracheal smooth muscle cells and contributes to bronchodilation. Respir Res 7:113

    PubMed Central  PubMed  Google Scholar 

  123. Vennekens R, Trouet D, Vankeerberghen A, Voets T, Cuppens H, Eggermont J, Cassiman JJ, Droogmans G, Nilius B (1999) Inhibition of volume-regulated anion channels by expression of the cystic fibrosis transmembrane conductance regulator. J Physiol 515(Pt 1):75–85

    PubMed Central  PubMed  CAS  Google Scholar 

  124. Wahlstrom BA (1973) A study on the action of noradrenaline on ionic content and sodium, potassium and chloride effluxes in the rat portal vein. Acta Physiol Scand 89:522–530

    PubMed  CAS  Google Scholar 

  125. Wahlstrom BA, Svennerholm B (1974) Potentiation and inhibition of noradrenaline induced contractions of the rat portal vein in anion substituted solutions. Acta Physiol Scand 92:404–411

    PubMed  CAS  Google Scholar 

  126. Wang L, Chen L, Jacob TJ (2000) The role of ClC-3 in volume-activated chloride currents and volume regulation in bovine epithelial cells demonstrated by antisense inhibition. J Physiol 524(Pt 1):63–75

    PubMed Central  PubMed  CAS  Google Scholar 

  127. Wang GX, Hatton WJ, Wang GL, Zhong J, Yamboliev I, Duan D, Hume JR (2003) Functional effects of novel anti-ClC-3 antibodies on native volume-sensitive osmolyte and anion channels in cardiac and smooth muscle cells. Am J Physiol Heart Circ Physiol 285:H1453–H1463

    PubMed  CAS  Google Scholar 

  128. Wang Q, Hogg RC, Large WA (1992) Properties of spontaneous inward currents recorded in smooth muscle cells isolated from the rabbit portal vein. J Physiol 451:525–537

    PubMed Central  PubMed  CAS  Google Scholar 

  129. Wang Q, Large WA (1991) Modulation of noradrenaline-induced membrane currents by papaverine in rabbit vascular smooth muscle cells. J Physiol 439:501–512

    PubMed Central  PubMed  CAS  Google Scholar 

  130. Wang Q, Large WA (1993) Action of histamine on single smooth muscle cells dispersed from the rabbit pulmonary artery. J Physiol 468:125–139

    PubMed Central  PubMed  CAS  Google Scholar 

  131. Wang GL, Wang XR, Lin MJ, He H, Lan XJ, Guan YY (2002) Deficiency in ClC-3 chloride channels prevents rat aortic smooth muscle cell proliferation. Circ Res 91:E28–E32

    PubMed  CAS  Google Scholar 

  132. Wang J, Xu H, Morishima S, Tanabe S, Jishage K, Uchida S, Sasaki S, Okada Y (2007) Single-channel properties of volume-sensitive Cl − channel in ClC-3 deficient cardiomyocytes. Jpn J Physiol 55:379–383

    Google Scholar 

  133. Wang M, Yang H, Zheng LY, Zhang Z, Tang YB, Wang GL, Du YH, Lv XF, Liu J, Zhou JG, Guan YY (2012) Downregulation of TMEM16A calcium-activated chloride channel contributes to cerebrovascular remodeling during hypertension by promoting basilar smooth muscle cell proliferation. Circulation 125:697–707

    PubMed  CAS  Google Scholar 

  134. Wei L, Vankeerberghen A, Cuppens H, Eggermont J, Cassiman JJ, Droogmans G, Nilius B (1999) Interaction between calcium-activated chloride channels and the cystic fibrosis transmembrane conductance regulator. Pflugers Arch 438:635–641

    PubMed  CAS  Google Scholar 

  135. Weylandt KH, Valverde MA, Nobles M, Raguz S, Amey JS, Diaz M, Nastrucci C, Higgins CF, Sardini A (2001) Human ClC-3 is not the swelling-activated chloride channel involved in cell volume regulation. J Biol Chem 276:17461–17467

    PubMed  CAS  Google Scholar 

  136. Weyler RT, Yurko-Mauro KA, Rubenstein R, Kollen WJ, Reenstra W, Altschuler SM, Egan M, Mulberg AE (1999) CFTR is functionally active in GnRH-expressing GT1-7 hypothalamic neurons. Am J Physiol 277:C563–C571

    PubMed  CAS  Google Scholar 

  137. White CR, Elton TS, Shoemaker RL, Brock TA (1995) Calcium-sensitive chloride channels in vascular smooth muscle cells. Proc Soc Exp Biol Med 208:255–262

    PubMed  CAS  Google Scholar 

  138. Xiao GN, Guan YY, He H (2002) Effects of Cl − channel blockers on endothelin-1-induced proliferation of rat vascular smooth muscle cells. Life Sci 70:2233–2241

    PubMed  CAS  Google Scholar 

  139. Yamamoto-Mizuma S, Wang GX, Liu LL, Schegg K, Hatton WJ, Duan D, Horowitz TL, Lamb FS, Hume JR (2004) Altered properties of volume-sensitive osmolyte and anion channels (VSOACs) and membrane protein expression in cardiac and smooth muscle myocytes from Clcn3−/− mice. J Physiol 557:439–456

    PubMed Central  PubMed  Google Scholar 

  140. Yamazaki J, Duan D, Janiak R, Kuenzli K, Horowitz B, Hume JR (1998) Functional and molecular expression of volume-regulated chloride channels in canine vascular smooth muscle cells. J Physiol 507(Pt 3):729–736

    PubMed Central  PubMed  CAS  Google Scholar 

  141. Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, Park SP, Lee J, Lee B, Kim BM, Raouf R, Shin YK, Oh U (2008) TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455:1210–1215

    PubMed  CAS  Google Scholar 

  142. Yang Z, Zhang Z, Xu Y, Wang T, Ma D, Ye T (2008) Effects of calcium-activated chloride channels on proliferation of pulmonary artery smooth muscle cells in rats under chronic hypoxic condition. J Nanjing Med Univ 22:39–43

    Google Scholar 

  143. Yim PD, Gallos G, Xu D, Zhang Y, Emala CW (2011) Novel expression of a functional glycine receptor chloride channel that attenuates contraction in airway smooth muscle. FASEB J 25:1706–1717

    PubMed  CAS  Google Scholar 

  144. Yu K, Duran C, Qu Z, Cui YY, Hartzell HC (2012) Explaining calcium-dependent gating of anoctamin-1 chloride channels requires a revised topology. Circ Res 110:990–999

    PubMed Central  PubMed  CAS  Google Scholar 

  145. Yuan XJ (1997) Role of calcium-activated chloride current in regulating pulmonary vasomotor tone. Am J Physiol 272:L959–L968

    PubMed  CAS  Google Scholar 

  146. Zhang CH, Li Y, Zhao W, Lifshitz LM, Li H, Harfe BD, Zhu MS, ZhuGe R (2013) The transmembrane protein 16A Ca(2+)-activated Cl − channel in airway smooth muscle contributes to airway hyperresponsiveness. Am J Respir Crit Care Med 187:374–381

    PubMed Central  PubMed  CAS  Google Scholar 

  147. Zhao YJ, Wang J, Rubin LJ, Yuan XJ (1998) Roles of K + and Cl − channels in cAMP-induced pulmonary vasodilation. Exp Lung Res 24:71–83

    PubMed  CAS  Google Scholar 

  148. Zhong J, Wang GX, Hatton WJ, Yamboliev IA, Walsh MP, Hume JR (2002) Regulation of volume-sensitive outwardly rectifying anion channels in pulmonary arterial smooth muscle cells by PKC. Am J Physiol Cell Physiol 283:C1627–C1636

    PubMed  CAS  Google Scholar 

  149. Zhou JG, Ren JL, Qiu QY, He H, Guan YY (2005) Regulation of intracellular Cl − concentration through volume-regulated ClC-3 chloride channels in A10 vascular smooth muscle cells. J Biol Chem 280:7301–7308

    PubMed  CAS  Google Scholar 

  150. ZhuGe R, Bao R, Fogarty KE, Lifshitz LM (2010) Ca2+ sparks act as potent regulators of excitation–contraction coupling in airway smooth muscle. J Biol Chem 285:2203–2210

    PubMed Central  PubMed  CAS  Google Scholar 

  151. ZhuGe R, Sims SM, Tuft RA, Fogarty KE, Walsh JV Jr (1998) Ca2+ sparks activate K + and Cl − channels, resulting in spontaneous transient currents in guinea-pig tracheal myocytes. J Physiol 513(Pt 3):711–718

    PubMed Central  PubMed  CAS  Google Scholar 

  152. Zielenski J (2000) Genotype and phenotype in cystic fibrosis. Respiration 67:117–133

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank M. Dennis Leo and Sarah K. Burris for reading the manuscript. This work was supported by National Institutes of Health Heart, Lung and Blood grants (HL67061, HL094378, and HL110347) awarded to Jonathan H. Jaggar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan H. Jaggar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulley, S., Jaggar, J.H. Cl channels in smooth muscle cells. Pflugers Arch - Eur J Physiol 466, 861–872 (2014). https://doi.org/10.1007/s00424-013-1357-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1357-2

Keywords

Navigation