Skip to main content

Advertisement

Log in

Emerging roles of cytomegalovirus-encoded G protein-coupled receptors during lytic and latent infection

  • Review
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Cytomegaloviruses (CMVs) have developed multiple diverse strategies to ensure their replicative success and to evade immune recognition. Given the fact that G protein-coupled receptors (GPCRs) are key regulators of numerous cellular processes and modify a variety of signaling pathways, it is not surprising that CMVs and other herpesviruses have hijacked mammalian GPCRs during their coevolution. Human cytomegalovirus (HCMV) encodes for four viral GPCR homologues (vGPCRs), termed US27, US28, UL33, and UL78. Although HCMV-encoded GPCRs were first described in 1990, the pivotal functions of these viral receptor proteins were detected only recently. Here, we summarize seminal knowledge on the functions of herpesviral vGPCRs with a focus on novel roles of cytomegalovirus-encoded vGPCRs for viral spread and the regulation of latency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63(6):1256–1272

    CAS  PubMed  Google Scholar 

  2. Xu HE, Xiao RP (2012) A new era for GPCR research: structures, biology and drug discovery. Acta Pharmacol Sin 33(3):289–290

    PubMed  PubMed Central  Google Scholar 

  3. Esche C, Stellato C, Beck LA (2005) Chemokines: key players in innate and adaptive immunity. J Invest Dermatol 125(4):615–628

    CAS  PubMed  Google Scholar 

  4. Lattin J, Zidar DA, Schroder K, Kellie S, Hume DA, Sweet MJ (2007) G-protein-coupled receptor expression, function, and signaling in macrophages. J Leukoc Biol 82(1):16–32

    CAS  PubMed  Google Scholar 

  5. Newton K, Dixit VM (2012) Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol 4(3):a006049

    PubMed  PubMed Central  Google Scholar 

  6. Sodhi A, Montaner S, Gutkind JS (2004) Viral hijacking of G-protein-coupled-receptor signalling networks. Nat Rev Mol Cell Biol 5(12):998–1012

    CAS  PubMed  Google Scholar 

  7. Montaner S, Kufareva I, Abagyan R, Gutkind JS (2013) Molecular mechanisms deployed by virally encoded G protein-coupled receptors in human diseases. Annu Rev Pharmacol Toxicol 53:331–354

    CAS  PubMed  Google Scholar 

  8. Vischer HF, Siderius M, Leurs R, Smit MJ (2014) Herpesvirus-encoded GPCRs: neglected players in inflammatory and proliferative diseases? Nat Rev Drug Discov 13(2):123–139

    CAS  PubMed  Google Scholar 

  9. Rosenkilde MM, Waldhoer M, Luttichau HR, Schwartz TW (2001) Virally encoded 7TM receptors. Oncogene 20(13):1582–1593

    CAS  PubMed  Google Scholar 

  10. Alcami A (2007) New insights into the subversion of the chemokine system by poxviruses. Eur J Immunol 37(4):880–883

    CAS  PubMed  Google Scholar 

  11. Seet BT, McFadden G (2002) Viral chemokine-binding proteins. J Leukoc Biol 72(1):24–34

    CAS  PubMed  Google Scholar 

  12. Chee MS, Satchwell SC, Preddie E, Weston KM, Barrell BG (1990) Human cytomegalovirus encodes three G protein-coupled receptor homologues. Nature 344(6268):774–777

    CAS  PubMed  Google Scholar 

  13. Takeda S, Kadowaki S, Haga T, Takaesu H, Mitaku S (2002) Identification of G protein-coupled receptor genes from the human genome sequence. FEBS Lett 520(1–3):97–101

    CAS  PubMed  Google Scholar 

  14. Lundstrom K (2009) An overview on GPCRs and drug discovery: structure-based drug design and structural biology on GPCRs. Methods Mol Biol 552:51–66

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hill SJ (2006) G-protein-coupled receptors: past, present and future. Br J Pharmacol 147(Suppl 1):S27–S37

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang CI, Lewis RJ (2013) Emerging opportunities for allosteric modulation of G-protein coupled receptors. Biochem Pharmacol 85(2):153–162

    CAS  PubMed  Google Scholar 

  17. Kristiansen K (2004) Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function. Pharmacol Ther 103(1):21–80

    CAS  PubMed  Google Scholar 

  18. Marinissen MJ, Gutkind JS (2001) G-protein-coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol Sci 22(7):368–376

    CAS  PubMed  Google Scholar 

  19. Chakraborty H, Chattopadhyay A (2015) Excitements and challenges in GPCR oligomerization: molecular insight from FRET. ACS Chem Neurosci 6:199–206

    CAS  PubMed  Google Scholar 

  20. Tang XL, Wang Y, Li DL, Luo J, Liu MY (2012) Orphan G protein-coupled receptors (GPCRs): biological functions and potential drug targets. Acta Pharmacol Sin 33(3):363–371

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Park PS, Filipek S, Wells JW, Palczewski K (2004) Oligomerization of G protein-coupled receptors: past, present, and future. Biochemistry 43(50):15643–15656

    CAS  PubMed  Google Scholar 

  22. Kobilka BK, Deupi X (2007) Conformational complexity of G-protein-coupled receptors. Trends Pharmacol Sci 28(8):397–406

    CAS  PubMed  Google Scholar 

  23. Kobilka BK (2007) G protein coupled receptor structure and activation. Biochim Biophys Acta 1768(4):794–807

    CAS  PubMed  Google Scholar 

  24. Davidson FF, Loewen PC, Khorana HG (1994) Structure and function in rhodopsin: replacement by alanine of cysteine residues 110 and 187, components of a conserved disulfide bond in rhodopsin, affects the light-activated metarhodopsin II state. Proc Natl Acad Sci USA 91(9):4029–4033

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Oldham WM, Hamm HE (2008) Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol 9(1):60–71

    CAS  PubMed  Google Scholar 

  26. Rovati GE, Capra V, Neubig RR (2007) The highly conserved DRY motif of class A G protein-coupled receptors: beyond the ground state. Mol Pharmacol 71(4):959–964

    CAS  PubMed  Google Scholar 

  27. Smrcka AV (2008) G protein betagamma subunits: central mediators of G protein-coupled receptor signaling. Cell Mol Life Sci 65(14):2191–2214

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hamm HE (1998) The many faces of G protein signaling. J Biol Chem 273(2):669–672

    CAS  PubMed  Google Scholar 

  29. McCudden CR, Hains MD, Kimple RJ, Siderovski DP, Willard FS (2005) G-protein signaling: back to the future. Cell Mol Life Sci 62(5):551–577

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sato M, Blumer JB, Simon V, Lanier SM (2006) Accessory proteins for G proteins: partners in signaling. Annu Rev Pharmacol Toxicol 46:151–187

    CAS  PubMed  Google Scholar 

  31. Nobles M, Benians A, Tinker A (2005) Heterotrimeric G proteins precouple with G protein-coupled receptors in living cells. Proc Natl Acad Sci USA 102(51):18706–18711

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Grabiner BC, Blonska M, Lin PC, You Y, Wang D, Sun J, Darnay BG, Dong C, Lin X (2007) CARMA3 deficiency abrogates G protein-coupled receptor-induced NF-κB activation. Genes Dev 21(8):984–996

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sun L, Deng L, Ea CK, Xia ZP, Chen ZJ (2004) The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol Cell 14(3):289–301

    CAS  PubMed  Google Scholar 

  34. Latek D, Modzelewska A, Trzaskowski B, Palczewski K, Filipek S (2012) G protein-coupled receptors—recent advances. Acta Biochim Pol 59(4):515–529

    CAS  PubMed  PubMed Central  Google Scholar 

  35. de Munnik SM, Smit MJ, Leurs R, Vischer HF (2015) Modulation of cellular signaling by herpesvirus-encoded G protein-coupled receptors. Front Pharmacol 6:40. https://doi.org/10.3389/fphar.2015.00040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Blackbourn DJ, Lennette E, Klencke B, Moses A, Chandran B, Weinstein M, Glogau RG, Witte MH, Way DL, Kutzkey T, Herndier B, Levy JA (2000) The restricted cellular host range of human herpesvirus 8. AIDS (London England) 14(9):1123–1133

    CAS  Google Scholar 

  37. Cesarman E, Damania B, Krown SE, Martin J, Bower M, Whitby D (2019) Kaposi sarcoma. Nat Rev Dis Primers 5(1):9. https://doi.org/10.1038/s41572-019-0060-9

    Article  PubMed  PubMed Central  Google Scholar 

  38. Guo HG, Sadowska M, Reid W, Tschachler E, Hayward G, Reitz M (2003) Kaposi’s sarcoma-like tumors in a human herpesvirus 8 ORF74 transgenic mouse. J Virol 77(4):2631–2639

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zuo J, Currin A, Griffin BD, Shannon-Lowe C, Thomas WA, Ressing ME, Wiertz EJ, Rowe M (2009) The Epstein–Barr virus G-protein-coupled receptor contributes to immune evasion by targeting MHC class I molecules for degradation. PLoS Pathog 5(1):e1000255. https://doi.org/10.1371/journal.ppat.1000255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Beisser PS, Verzijl D, Gruijthuijsen YK, Beuken E, Smit MJ, Leurs R, Bruggeman CA, Vink C (2005) The Epstein–Barr virus BILF1 gene encodes a G protein-coupled receptor that inhibits phosphorylation of RNA-dependent protein kinase. J Virol 79(1):441–449

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Isegawa Y, Ping Z, Nakano K, Sugimoto N, Yamanishi K (1998) Human herpesvirus 6 open reading frame U12 encodes a functional beta-chemokine receptor. J Virol 72(7):6104–6112

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Menotti L, Mirandola P, Locati M, Campadelli-Fiume G (1999) Trafficking to the plasma membrane of the seven-transmembrane protein encoded by human herpesvirus 6 U51 gene involves a cell-specific function present in T lymphocytes. J Virol 73(1):325–333

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Attwood TK, Findlay JB (1994) Fingerprinting G-protein-coupled receptors. Protein Eng 7(2):195–203

    CAS  PubMed  Google Scholar 

  44. Margulies BJ, Browne H, Gibson W (1996) Identification of the human cytomegalovirus G protein-coupled receptor homologue encoded by UL33 in infected cells and enveloped virus particles. Virology 225(1):111–125

    CAS  PubMed  Google Scholar 

  45. Bodaghi B, Jones TR, Zipeto D, Vita C, Sun L, Laurent L, renzana-Seisdedos F, Virelizier JL, Michelson S (1998) Chemokine sequestration by viral chemoreceptors as a novel viral escape strategy: withdrawal of chemokines from the environment of cytomegalovirus-infected cells. J Exp Med 188(5):855–866

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Krishna BA, Miller WE, O’Connor CM (2018) US28: HCMV’s Swiss Army Knife. Viruses 10(8):445. https://doi.org/10.3390/v10080445

    Article  CAS  PubMed Central  Google Scholar 

  47. Casarosa P, Waldhoer M, LiWang PJ, Vischer HF, Kledal T, Timmerman H, Schwartz TW, Smit MJ, Leurs R (2005) CC and CX3C chemokines differentially interact with the N terminus of the human cytomegalovirus-encoded US28 receptor. J Biol Chem 280(5):3275–3285

    CAS  PubMed  Google Scholar 

  48. Gao JL, Murphy PM (1994) Human cytomegalovirus open reading frame US28 encodes a functional beta chemokine receptor. J Biol Chem 269(46):28539–28542

    CAS  PubMed  Google Scholar 

  49. Kledal TN, Rosenkilde MM, Schwartz TW (1998) Selective recognition of the membrane-bound CX3C chemokine, fractalkine, by the human cytomegalovirus-encoded broad-spectrum receptor US28. FEBS Lett 441(2):209–214

    CAS  PubMed  Google Scholar 

  50. Kuhn DE, Beall CJ, Kolattukudy PE (1995) The cytomegalovirus US28 protein binds multiple CC chemokines with high affinity. Biochem Biophys Res Commun 211(1):325–330

    CAS  PubMed  Google Scholar 

  51. Streblow DN, Soderberg-Naucler C, Vieira J, Smith P, Wakabayashi E, Ruchti F, Mattison K, Altschuler Y, Nelson JA (1999) The human cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle cell migration. Cell 99(5):511–520

    CAS  PubMed  Google Scholar 

  52. Streblow DN, Vomaske J, Smith P, Melnychuk R, Hall L, Pancheva D, Smit M, Casarosa P, Schlaepfer DD, Nelson JA (2003) Human cytomegalovirus chemokine receptor US28-induced smooth muscle cell migration is mediated by focal adhesion kinase and Src. J Biol Chem 278(50):50456–50465

    CAS  PubMed  Google Scholar 

  53. Vieira J, Schall TJ, Corey L, Geballe AP (1998) Functional analysis of the human cytomegalovirus US28 gene by insertion mutagenesis with the green fluorescent protein gene. J Virol 72(10):8158–8165

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Casarosa P, Bakker RA, Verzijl D, Navis M, Timmerman H, Leurs R, Smit MJ (2001) Constitutive signaling of the human cytomegalovirus-encoded chemokine receptor US28. J Biol Chem 276(2):1133–1137

    CAS  PubMed  Google Scholar 

  55. McLean KA, Holst PJ, Martini L, Schwartz TW, Rosenkilde MM (2004) Similar activation of signal transduction pathways by the herpesvirus-encoded chemokine receptors US28 and ORF74. Virology 325(2):241–251

    CAS  PubMed  Google Scholar 

  56. Slinger E, Maussang D, Schreiber A, Siderius M, Rahbar A, Fraile-Ramos A, Lira SA, Soderberg-Naucler C, Smit MJ (2010) HCMV-encoded chemokine receptor US28 mediates proliferative signaling through the IL-6-STAT3 axis. Sci Signal 3(133):ra58

    PubMed  Google Scholar 

  57. Vischer HF, Leurs R, Smit MJ (2006) HCMV-encoded G-protein-coupled receptors as constitutively active modulators of cellular signaling networks. Trends Pharmacol Sci 27(1):56–63

    CAS  PubMed  Google Scholar 

  58. Fraile-Ramos A, Kledal TN, Pelchen-Matthews A, Bowers K, Schwartz TW, Marsh M (2001) The human cytomegalovirus US28 protein is located in endocytic vesicles and undergoes constitutive endocytosis and recycling. Mol Biol Cell 12(6):1737–1749

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Waldhoer M, Casarosa P, Rosenkilde MM, Smit MJ, Leurs R, Whistler JL, Schwartz TW (2003) The carboxyl terminus of human cytomegalovirus-encoded 7 transmembrane receptor US28 camouflages agonism by mediating constitutive endocytosis. J Biol Chem 278(21):19473–19482

    CAS  PubMed  Google Scholar 

  60. Billstrom MA, Lehman LA, Scott WG (1999) Depletion of extracellular RANTES during human cytomegalovirus infection of endothelial cells. Am J Respir Cell Mol Biol 21(2):163–167

    CAS  PubMed  Google Scholar 

  61. Randolph-Habecker JR, Rahill B, Torok-Storb B, Vieira J, Kolattukudy PE, Rovin BH, Sedmak DD (2002) The expression of the cytomegalovirus chemokine receptor homolog US28 sequesters biologically active CC chemokines and alters IL-8 production. Cytokine 19(1):37–46

    CAS  PubMed  Google Scholar 

  62. Burg JS, Ingram JR, Venkatakrishnan AJ, Jude KM, Dukkipati A, Feinberg EN, Angelini A, Waghray D, Dror RO, Ploegh HL, Garcia KC (2015) Structural biology. Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor. Science 347(6226):1113–1117. https://doi.org/10.1126/science.aaa5026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Luckmann M, Amarandi RM, Papargyri N, Jakobsen MH, Christiansen E, Jensen LJ, Pui A, Schwartz TW, Rosenkilde MM, Frimurer TM (2017) Structure-based discovery of novel US28 small molecule ligands with different modes of action. Chem Biol Drug Des 89(3):289–296. https://doi.org/10.1111/cbdd.12848

    Article  CAS  PubMed  Google Scholar 

  64. van Cleef KW, Smit MJ, Bruggeman CA, Vink C (2006) Cytomegalovirus-encoded homologs of G protein-coupled receptors and chemokines. J Clin Virol 35(3):343–348

    PubMed  Google Scholar 

  65. Slinger E, Langemeijer E, Siderius M, Vischer HF, Smit MJ (2011) Herpesvirus-encoded GPCRs rewire cellular signaling. Mol Cell Endocrinol 331(2):179–184

    CAS  PubMed  Google Scholar 

  66. Langemeijer EV, Slinger E, de MS, Schreiber, Maussang A, Vischer D, Verkaar H, Leurs F, Siderius R, Smit M MJ (2012) Constitutive beta-catenin signaling by the viral chemokine receptor US28. PLoS One 7(11):e48935

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Waldhoer M, Kledal TN, Farrell H, Schwartz TW (2002) Murine cytomegalovirus (CMV) M33 and human CMV US28 receptors exhibit similar constitutive signaling activities. J Virol 76(16):8161–8168

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Farrell HE, Abraham AM, Cardin RD, Molleskov-Jensen AS, Rosenkilde MM, vis-Poynter N (2013) Identification of common mechanisms by which human and mouse cytomegalovirus seven-transmembrane receptor homologues contribute to in vivo phenotypes in a mouse model. J Virol 87(7):4112–4117

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Casarosa P, Gruijthuijsen YK, Michel D, Beisser PS, Holl J, Fitzsimons CP, Verzijl D, Bruggeman CA, Mertens T, Leurs R, Vink C, Smit MJ (2003) Constitutive signaling of the human cytomegalovirus-encoded receptor UL33 differs from that of its rat cytomegalovirus homolog R33 by promiscuous activation of G proteins of the Gq, Gi, and Gs classes. J Biol Chem 278(50):50010–50023

    CAS  PubMed  Google Scholar 

  70. Gruijthuijsen YK, Casarosa P, Kaptein SJ, Broers JL, Leurs R, Bruggeman CA, Smit MJ, Vink C (2002) The rat cytomegalovirus R33-encoded G protein-coupled receptor signals in a constitutive fashion. J Virol 76(3):1328–1338

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Cardin RD, Schaefer GC, Allen JR, vis-Poynter NJ, Farrell HE (2009) The M33 chemokine receptor homolog of murine cytomegalovirus exhibits a differential tissue-specific role during in vivo replication and latency. J Virol 83(15):7590–7601

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Beisser PS, Vink C, Van Dam JG, Grauls G, Vanherle SJ, Bruggeman CA (1998) The R33 G protein-coupled receptor gene of rat cytomegalovirus plays an essential role in the pathogenesis of viral infection. J Virol 72(3):2352–2363

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Case R, Sharp E, ned-Jensen T, Rosenkilde MM, vis-Poynter N, Farrell HE (2008) Functional analysis of the murine cytomegalovirus chemokine receptor homologue M33: ablation of constitutive signaling is associated with an attenuated phenotype in vivo. J Virol 82(4):1884–1898

    CAS  PubMed  Google Scholar 

  74. Farrell HE, Abraham AM, Cardin RD, Sparre-Ulrich AH, Rosenkilde MM, Spiess K, Jensen TH, Kledal TN, vis-Poynter N (2011) Partial functional complementation between human and mouse cytomegalovirus chemokine receptor homologues. J Virol 85(12):6091–6095

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Scarborough JA, Paul JR, Spencer JV (2017) Evolution of the ability to modulate host chemokine networks via gene duplication in human cytomegalovirus (HCMV). Infect Genet Evolut 51:46–53. https://doi.org/10.1016/j.meegid.2017.03.013

    Article  CAS  Google Scholar 

  76. Margulies BJ, Gibson W (2007) The chemokine receptor homologue encoded by US27 of human cytomegalovirus is heavily glycosylated and is present in infected human foreskin fibroblasts and enveloped virus particles. Virus Res 123(1):57–71

    CAS  PubMed  Google Scholar 

  77. Lares AP, Tu CC, Spencer JV (2013) The human cytomegalovirus US27 gene product enhances cell proliferation and alters cellular gene expression. Virus Res 176(1–2):312–320

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Arnolds KL, Lares AP, Spencer JV (2013) The US27 gene product of human cytomegalovirus enhances signaling of host chemokine receptor CXCR4. Virology 439(2):122–131

    CAS  PubMed  Google Scholar 

  79. Tadagaki K, Tudor D, Gbahou F, Tschische P, Waldhoer M, Bomsel M, Jockers R, Kamal M (2012) Human cytomegalovirus-encoded UL33 and UL78 heteromerize with host CCR5 and CXCR4 impairing their HIV coreceptor activity. Blood 119(21):4908–4918

    CAS  PubMed  Google Scholar 

  80. Boeck JM, Spencer JV (2017) Effect of human cytomegalovirus (HCMV) US27 on CXCR4 receptor internalization measured by fluorogen-activating protein (FAP) biosensors. PLoS One 12(2):e0172042. https://doi.org/10.1371/journal.pone.0172042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fraile-Ramos A, Pelchen-Matthews A, Kledal TN, Browne H, Schwartz TW, Marsh M (2002) Localization of HCMV UL33 and US27 in endocytic compartments and viral membranes. Traffic 3(3):218–232

    CAS  PubMed  Google Scholar 

  82. Stapleton LK, Arnolds KL, Lares AP, Devito TM, Spencer JV (2012) Receptor chimeras demonstrate that the C-terminal domain of the human cytomegalovirus US27 gene product is necessary and sufficient for intracellular receptor localization. Virol J 9:42

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Murphy E, Yu D, Grimwood J, Schmutz J, Dickson M, Jarvis MA, Hahn G, Nelson JA, Myers RM, Shenk TE (2003) Coding potential of laboratory and clinical strains of human cytomegalovirus. Proc Natl Acad Sci USA 100(25):14976–14981

    CAS  PubMed  PubMed Central  Google Scholar 

  84. O’Connor CM, Shenk T (2011) Human cytomegalovirus pUS27 G protein-coupled receptor homologue is required for efficient spread by the extracellular route but not for direct cell-to-cell spread. J Virol 85(8):3700–3707

    PubMed  PubMed Central  Google Scholar 

  85. Niemann I, Reichel A, Stamminger T (2014) Intracellular trafficking of the human cytomegalovirus-encoded 7-trans-membrane protein homologs pUS27 and pUL78 during viral infection: a comparative analysis. Viruses 6(2):661–682

    PubMed  PubMed Central  Google Scholar 

  86. Hutterer C, Niemann I, Milbradt J, Frohlich T, Reiter C, Kadioglu O, Bahsi H, Zeittrager I, Wagner S, Einsiedel J, Gmeiner P, Vogel N, Wandinger S, Godl K, Stamminger T, Efferth T, Tsogoeva SB, Marschall M (2015) The broad-spectrum antiinfective drug artesunate interferes with the canonical nuclear factor kappa B (NF-kappaB) pathway by targeting RelA/p65. Antivir Res 124:101–109. https://doi.org/10.1016/j.antiviral.2015.10.003

    Article  CAS  PubMed  Google Scholar 

  87. O’Connor CM, Shenk T (2012) Human cytomegalovirus pUL78 G protein-coupled receptor homologue is required for timely cell entry in epithelial cells but not fibroblasts. J Virol 86(21):11425–11433

    PubMed  PubMed Central  Google Scholar 

  88. Beisser PS, Grauls G, Bruggeman CA, Vink C (1999) Deletion of the R78 G protein-coupled receptor gene from rat cytomegalovirus results in an attenuated, syncytium-inducing mutant strain. J Virol 73(9):7218–7230

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Kaptein SJ, Beisser PS, Gruijthuijsen YK, Savelkouls KG, van Cleef KW, Beuken E, Grauls GE, Bruggeman CA, Vink C (2003) The rat cytomegalovirus R78 G protein-coupled receptor gene is required for production of infectious virus in the spleen. J Gen Virol 84(Pt 9):2517–2530

    CAS  PubMed  Google Scholar 

  90. Oliveira SA, Shenk TE (2001) Murine cytomegalovirus M78 protein, a G protein-coupled receptor homologue, is a constituent of the virion and facilitates accumulation of immediate-early viral mRNA. Proc Natl Acad Sci USA 98(6):3237–3242

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wagner S, Arnold F, Wu Z, Schubert A, Walliser C, Tadagaki K, Jockers R, Mertens T, Michel D (2012) The 7-transmembrane protein homologue UL78 of the human cytomegalovirus forms oligomers and traffics between the plasma membrane and different intracellular compartments. Arch Virol 157(5):935–949

    CAS  PubMed  Google Scholar 

  92. Tschische P, Tadagaki K, Kamal M, Jockers R, Waldhoer M (2011) Heteromerization of human cytomegalovirus encoded chemokine receptors. Biochem Pharmacol 82(6):610–619

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Farrell HE, Stevenson PG (2019) Cytomegalovirus host entry and spread. J Gen Virol. https://doi.org/10.1099/jgv.0.001230

    Article  PubMed  Google Scholar 

  94. Bittencourt FM, Wu SE, Bridges JP, Miller WE (2014) The M33 G protein-coupled receptor encoded by murine cytomegalovirus is dispensable for hematogenous dissemination but is required for growth within the salivary gland. J Virol 88(20):11811–11824. https://doi.org/10.1128/jvi.01006-14

    Article  PubMed  PubMed Central  Google Scholar 

  95. Farrell HE, Bruce K, Lawler C, Oliveira M, Cardin R, Davis-Poynter N, Stevenson PG (2017) Murine cytomegalovirus spreads by dendritic cell recirculation. mBio 8(5):e01264-17. https://doi.org/10.1128/mBio.01264-17

    Article  PubMed  PubMed Central  Google Scholar 

  96. Randolph GJ, Angeli V, Swartz MA (2005) Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat Rev Immunol 5(8):617–628. https://doi.org/10.1038/nri1670

    Article  CAS  PubMed  Google Scholar 

  97. Farrell HE, Bruce K, Ma J, Davis-Poynter N, Stevenson PG (2018) Human cytomegalovirus US28 allows dendritic cell exit from lymph nodes. J Gen Virol 99(11):1509–1514. https://doi.org/10.1099/jgv.0.001154

    Article  CAS  PubMed  Google Scholar 

  98. Beisser PS, Laurent L, Virelizier JL, Michelson S (2001) Human cytomegalovirus chemokine receptor gene US28 is transcribed in latently infected THP-1 monocytes. J Virol 75(13):5949–5957

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Hargett D, Shenk TE (2010) Experimental human cytomegalovirus latency in CD14+ monocytes. Proc Natl Acad Sci USA 107(46):20039–20044. https://doi.org/10.1073/pnas.1014509107

    Article  PubMed  PubMed Central  Google Scholar 

  100. Humby MS, O’Connor CM (2015) Human cytomegalovirus US28 is important for latent infection of hematopoietic progenitor cells. J Virol 90(6):2959–2970. https://doi.org/10.1128/jvi.02507-15

    Article  PubMed  Google Scholar 

  101. Krishna BA, Poole EL, Jackson SE, Smit MJ, Wills MR, Sinclair JH (2017) Latency-associated expression of human cytomegalovirus US28 attenuates cell signaling pathways to maintain latent infection. mBio 8(6):e01754-17. https://doi.org/10.1128/mBio.01754-17

    Article  PubMed  PubMed Central  Google Scholar 

  102. Krishna BA, Humby MS, Miller WE, O’Connor CM (2019) Human cytomegalovirus G protein-coupled receptor US28 promotes latency by attenuating c-fos. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1816933116

    Article  PubMed  PubMed Central  Google Scholar 

  103. Boomker JM, The TH, de Leij LF, Harmsen MC (2006) The human cytomegalovirus-encoded receptor US28 increases the activity of the major immediate-early promoter/enhancer. Virus Res 118(1–2):196–200

    CAS  PubMed  Google Scholar 

  104. Zhu D, Pan C, Sheng J, Liang H, Bian Z, Liu Y, Trang P, Wu J, Liu F, Zhang CY, Zen K (2018) Human cytomegalovirus reprogrammes haematopoietic progenitor cells into immunosuppressive monocytes to achieve latency. Nat Microbiol 3(4):503–513. https://doi.org/10.1038/s41564-018-0131-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Krishna BA, Lau B, Jackson SE, Wills MR, Sinclair JH, Poole E (2016) Transient activation of human cytomegalovirus lytic gene expression during latency allows cytotoxic T cell killing of latently infected cells. Sci Rep 6:24674. https://doi.org/10.1038/srep24674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lee S, Chung YH, Lee C (2017) US28, a virally-encoded GPCR as an antiviral target for human cytomegalovirus infection. Biomol Ther 25(1):69–79. https://doi.org/10.4062/biomolther.2016.208

    Article  CAS  Google Scholar 

  107. Spiess K, Jeppesen MG, Malmgaard-Clausen M, Krzywkowski K, Dulal K, Cheng T, Hjorto GM, Larsen O, Burg JS, Jarvis MA, Garcia KC, Zhu H, Kledal TN, Rosenkilde MM (2015) Rationally designed chemokine-based toxin targeting the viral G protein-coupled receptor US28 potently inhibits cytomegalovirus infection in vivo. Proc Natl Acad Sci USA 112(27):8427–8432. https://doi.org/10.1073/pnas.1509392112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Krishna BA, Spiess K, Poole EL, Lau B, Voigt S, Kledal TN, Rosenkilde MM, Sinclair JH (2017) Targeting the latent cytomegalovirus reservoir with an antiviral fusion toxin protein. Nat Commun 8:14321. https://doi.org/10.1038/ncomms14321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (STA357/7-1), the Wilhelm-Sander-Stiftung (2016.087.1) and the Kompetenznetzwerk Zytomegalie Baden-Württemberg (KSKV002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Stamminger.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Edited by: Melanie Brinkmann.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Special Issue on “Immunological Imprinting during Chronic Viral Infection”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frank, T., Niemann, I., Reichel, A. et al. Emerging roles of cytomegalovirus-encoded G protein-coupled receptors during lytic and latent infection. Med Microbiol Immunol 208, 447–456 (2019). https://doi.org/10.1007/s00430-019-00595-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-019-00595-9

Keywords

Navigation