Skip to main content

Advertisement

Log in

Identification of genomic regions contributing to etoposide-induced cytotoxicity

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Etoposide is routinely used in combination-based chemotherapy for testicular cancer and small-cell lung cancer; however, myelosuppression, therapy-related leukemia and neurotoxicity limit its utility. To determine the genetic contribution to cellular sensitivity to etoposide, we evaluated cell growth inhibition in Centre d’ Etude du Polymorphisme Humain lymphoblastoid cell lines from 24 multi-generational pedigrees (321 samples) following treatment with 0.02–2.5 μM etoposide for 72 h. Heritability analysis showed that genetic variation contributes significantly to the cytotoxic phenotypes (h 2 = 0.17–0.25, P = 4.9 × 10−5–7.3 × 10−3). Whole genome linkage scans uncovered 8 regions with peak LOD scores ranging from 1.57 to 2.55, with the most significant signals being found on chromosome 5 (LOD = 2.55) and chromosome 6 (LOD = 2.52). Linkage-directed association was performed on a subset of HapMap samples within the pedigrees to find 22 SNPs significantly associated with etoposide cytotoxicity at one or more treatment concentrations. UVRAG, a DNA repair gene, SEMA5A, SLC7A6 and PRMT7 are implicated from these unbiased studies. Our findings suggest that susceptibility to etoposide-induced cytotoxicity is heritable and using an integrated genomics approach we identified both genomic regions and SNPs associated with the cytotoxic phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

EBV:

Epstein–Barr Virus

LCLs:

Lymphoblastoid cell lines

CEPH:

Center d’Etude du Polymorphisme Humain

CHR:

Chromosome

SNPs:

Single nucleotide polymorphisms

SOLAR:

Sequential Oligogenic Linkage Analysis Routines

MERLIN:

Multipoint Engine for Rapid Likelihood Inference

QTL:

Quantitative trait loci

FDR:

False discovery rate

QTDT:

Quantitative transmission disequilibrium test

LOD:

Logarithm of the odds

References

  • Aase K, Ernkvist M, Ebarasi L, Jakobsson L, Majumdar A, Yi C, Birot O, Ming Y, Kvanta A, Edholm D, Aspenstrom P, Kissil J, Claesson-Welsh L, Shimono A, Holmgren L (2007) Angiomotin regulates endothelial cell migration during embryonic angiogenesis. Genes Dev 21:2055–2068

    Article  PubMed  CAS  Google Scholar 

  • Abecasis GR, Cardon LR, Cookson WO (2000a) A general test of association for quantitative traits in nuclear families. Am J Hum Genet 66:279–292

    Article  PubMed  CAS  Google Scholar 

  • Abecasis GR, Cookson WO, Cardon LR (2000b) Pedigree tests of transmission disequilibrium. Eur J Hum Genet 8:545–551

    Article  PubMed  CAS  Google Scholar 

  • Abecasis GR, Cherny SS, Cookson WO, Cardon LR (2002) Merlin-rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 30:97–101

    Article  PubMed  CAS  Google Scholar 

  • Adams RH, Betz H, Puschel AW (1996) A novel class of murine semaphorins with homology to thrombospondin is differentially expressed during early embryogenesis. Mech Dev 57:33–45

    Article  PubMed  CAS  Google Scholar 

  • Arancibia-Garavilla Y, Toledo F, Casanello P, Sobrevia L (2003) Nitric oxide synthesis requires activity of the cationic and neutral amino acid transport system y + L in human umbilical vein endothelium. Exp Physiol 88:699–710

    Article  PubMed  CAS  Google Scholar 

  • Baldwin EL, Osheroff N (2005) Etoposide, topoisomerase II and cancer. Curr Med Chem Anticancer Agents 5:363–372

    Article  PubMed  CAS  Google Scholar 

  • Bedford MT, Richard S (2005) Arginine methylation an emerging regulator of protein function. Mol Cell 18:263–272

    Article  PubMed  CAS  Google Scholar 

  • Cheung VG, Spielman RS, Ewens KG, Weber TM, Morley M, Burdick JT (2005) Mapping determinants of human gene expression by regional and genome-wide association. Nature 437:1365–1369

    Article  PubMed  CAS  Google Scholar 

  • Dolan ME, Newbold KG, Nagasubramanian R, Wu X, Ratain MJ, Cook EH Jr, Badner JA (2004) Heritability and linkage analysis of sensitivity to cisplatin-induced cytotoxicity. Cancer Res 64:4353–4356

    Article  PubMed  CAS  Google Scholar 

  • Duan S, Bleibel WK, Huang RS, Shukla SJ, Wu X, Badner JA, Dolan ME (2007) Mapping genes that contribute to daunorubicin-induced cytotoxicity. Cancer Res 67:5425–5433

    Article  PubMed  CAS  Google Scholar 

  • Gros L, Renodon-Corniere A, de Saint Vincent BR, Feder M, Bujnicki JM, Jacquemin-Sablon A (2006) Characterization of prmt7alpha and beta isozymes from Chinese hamster cells sensitive and resistant to topoisomerase II inhibitors. Biochim Biophys Acta 1760:1646–1656

    PubMed  CAS  Google Scholar 

  • Hartford CM, Dolan ME (2007) Identifying genetic variants that contribute to chemotherapy-induced cytotoxicity. Pharmacogenomics 8:1159–1168

    Article  PubMed  CAS  Google Scholar 

  • Huang RS, Duan S, Shukla SJ, Kistner EO, Clark TA, Chen TX, Schweitzer AC, Blume JE, Dolan ME (2007a) Identification of genetic variants contributing to cisplatin-induced cytotoxicity by use of a genomewide approach. Am J Hum Genet 81:427–437

    Article  PubMed  CAS  Google Scholar 

  • Huang RS, Kistner EO, Bleibel WK, Shukla SJ, Dolan ME (2007b) Effect of population and gender on chemotherapeutic agent-induced cytotoxicity. Mol Cancer Ther 6:31–36

    Article  PubMed  CAS  Google Scholar 

  • Jen KY, Cheung VG (2003) Transcriptional response of lymphoblastoid cells to ionizing radiation. Genome Res 13:2092–2100

    Article  PubMed  CAS  Google Scholar 

  • Katoh M, Katoh M (2004) Pharmacogenomics on gastric cancer. Cancer Biol Ther 3:566–567

    PubMed  Google Scholar 

  • Kopp HG, Kuczyk M, Classen J, Stenzl A, Kanz L, Mayer F, Bamberg M, Hartmann JT (2006) Advances in the treatment of testicular cancer. Drugs 66:641–659

    Article  PubMed  CAS  Google Scholar 

  • Lee SB, Tong SY, Kim JJ, Um SJ, Park JS (2007) Caspase-independent autophagic cytotoxicity in etoposide-treated CaSki cervical carcinoma cells. DNA Cell Biol 26:713–720

    Article  PubMed  CAS  Google Scholar 

  • Leon L, Jeannin JF, Bettaieb A (2008) Post-translational modifications induced by nitric oxide (NO): implication in cancer cells apoptosis. Nitric Oxide 19:77–83

    Article  PubMed  CAS  Google Scholar 

  • Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402:672–676

    Article  PubMed  CAS  Google Scholar 

  • Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh BH, Jung JU (2006) Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 8:688–699

    Article  PubMed  CAS  Google Scholar 

  • Liang C, Feng P, Ku B, Oh BH, Jung JU (2007) UVRAG: a new player in autophagy and tumor cell growth. Autophagy 3:69–71

    PubMed  CAS  Google Scholar 

  • Lowe SW, Ruley HE, Jacks T, Housman DE (1993) p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74:957–967

    Article  PubMed  CAS  Google Scholar 

  • Miranda TB, Miranda M, Frankel A, Clarke S (2004) PRMT7 is a member of the protein arginine methyltransferase family with a distinct substrate specificity. J Biol Chem 279:22902–22907

    Article  PubMed  CAS  Google Scholar 

  • Morley M, Molony CM, Weber TM, Devlin JL, Ewens KG, Spielman RS, Cheung VG (2004) Genetic analysis of genome-wide variation in human gene expression. Nature 430:743–747

    Article  PubMed  CAS  Google Scholar 

  • O’Connell JR, Weeks DE (1998) PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 63:259–266

    Article  PubMed  CAS  Google Scholar 

  • Ooyama A, Okayama Y, Takechi T, Sugimoto Y, Oka T, Fukushima M (2007) Genome-wide screening of loci associated with drug resistance to 5-fluorouracil-based drugs. Cancer Sci 98:577–583

    Article  PubMed  CAS  Google Scholar 

  • Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–939

    Article  PubMed  CAS  Google Scholar 

  • Rigas JR, Lara PN Jr (2005) Current perspectives on treatment strategies for locally advanced, unresectable stage III non-small cell lung cancer. Lung Cancer 50(Suppl 2):S17–S24

    Article  PubMed  Google Scholar 

  • Ross W, Rowe T, Glisson B, Yalowich J, Liu L (1984) Role of topoisomerase II in mediating epipodophyllotoxin-induced DNA cleavage. Cancer Res 44:5857–5860

    PubMed  CAS  Google Scholar 

  • Shukla SJ, Duan S, Badner JA, Wu X, Dolan ME (2008) Susceptibility loci involved in cisplatin-induced cytotoxicity and apoptosis. Pharmacogenet Genomics 18:253–262

    Article  PubMed  CAS  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100:9440–9445

    Article  PubMed  CAS  Google Scholar 

  • Sun L, Wilder K, McPeek MS (2002) Enhanced pedigree error detection. Hum Hered 54:99–110

    Article  PubMed  Google Scholar 

  • Verbiest V, Montaudon D, Tautu MT, Moukarzel J, Portail JP, Markovits J, Robert J, Ichas F, Pourquier P (2008) Protein arginine (N)-methyl transferase 7 (PRMT7) as a potential target for the sensitization of tumor cells to camptothecins. FEBS Lett 582:1483–1489

    Article  PubMed  CAS  Google Scholar 

  • Watters JW, Kraja A, Meucci MA, Province MA, McLeod HL (2004) Genome-wide discovery of loci influencing chemotherapy cytotoxicity. Proc Natl Acad Sci USA 101:11809–11814

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Rowe TC, Liu LF (1985) Identification of DNA topoisomerase II as an intracellular target of antitumor epipodophyllotoxins in simian virus 40-infected monkey cells. Cancer Res 45:5872–5876

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are extremely grateful to Dr. Jeong-Ah Kang for maintaining the cell lines. This Pharmacogenetics of Anticancer Agents Research (PAAR) Group (http://pharmacogenetics.org) study was supported by NIH/NIGMS grant GM61393 with data deposits supported by U01GM61374. Phenotypic data reported in this article can be accessed through http://www.PharmGKB.org by using data accession number PS207137.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Eileen Dolan.

Additional information

W. K. Bleibel and S. Duan equally contributed to this work.

Appendix: web resources

Appendix: web resources

The URLs for data presented herein are as follows:

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bleibel, W.K., Duan, S., Huang, R.S. et al. Identification of genomic regions contributing to etoposide-induced cytotoxicity. Hum Genet 125, 173–180 (2009). https://doi.org/10.1007/s00439-008-0607-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-008-0607-4

Keywords

Navigation