Skip to main content

Advertisement

Log in

Cellular pathology of Parkinson’s disease: astrocytes, microglia and inflammation

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a frequent neurological disorder of the basal ganglia, which is characterized by the progressive loss of dopaminergic neurons mainly in the substantia nigra pars compacta (SNpc). Inflammatory processes have been shown to be associated with the pathogenesis of PD. Activated microglia, as well as to a lesser extent reactive astrocytes, are found in the area associated with cell loss, possibly contributing to the inflammatory process by the release of pro-inflammatory prostaglandins or cytokines. Further deleterious factors released by activated microglia or astrocytes are reactive oxygen species. On the other hand, they may mediate neuroprotective properties by the release of trophic factors or the uptake of glutamate. In this review, we will discuss the different aspects of activated glial cells and potential mechanisms that mediate or protect against cell loss in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agid Y, Javoy-Agid F, Ruberg M (1987) Biochemistry of neurotransmitters in Parkinson’s disease. In: Marsden CD, Fahn S (eds) Movement disorders 2. Butterworths, London, pp 166–230

    Google Scholar 

  • Akiyama H, McGeer PL (1989) Microglial response to 6-hydroxydopamine-induced substantia nigra lesions. Brain Res 489:247–253

    Article  CAS  PubMed  Google Scholar 

  • Andreasson KI, Savonenko A, Vidensky S, Goellner JJ, Zhang Y, Shaffer A, Kaufmann WE, Worley PF, Isakson P, Markowska AL (2001) Age-dependent cognitive deficits and neuronal apoptosis in cyclooxygenase-2 transgenic mice. J Neurosci 21:8198–8209

    CAS  PubMed  Google Scholar 

  • Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, Marquez J, Mouatt-Prigent A, Ruberg M, Hirsch EC, Agid Y (1997) Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol Histopathol 12:25–31

    CAS  PubMed  Google Scholar 

  • Baba M, Nakajo S, Tu PH, Tomita T, Nakaya K, Lee VM, Trojanowski JQ, Iwatsubo T (1998) Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am J Pathol 152:879–884

    CAS  PubMed  Google Scholar 

  • Babior BM (1999) NADPH oxidase: an update. Blood 93:1464–1476

    CAS  PubMed  Google Scholar 

  • Banati RB, Gehrmann J, Schubert P, Kreutzberg GW (1993) Cytotoxicity of microglia. Glia 7:111–118

    CAS  PubMed  Google Scholar 

  • Banati RB, Daniel SE, Blunt SB (1998) Glial pathology but absence of apoptotic nigral neurons in long-standing Parkinson’s disease. Mov Disord 13:221–227

    CAS  PubMed  Google Scholar 

  • Bazan NG (1999) Eicosanoids, platelet-activating factor and inflammation. In: Siegel GJ, Agranoff BW, Albers RW, Fisher SK, Uhler MD (eds) Basic neurochemistry. Raven, New York, pp 731–741

    Google Scholar 

  • Benazzouz A, Piallat B, Ni ZG, Koudsie A, Pollak P, Benabid AL (2000) Implication of the subthalamic nucleus in the pathophysiology and pathogenesis of Parkinson’s disease. Cell Transplant 9:215–221

    CAS  PubMed  Google Scholar 

  • Bessler H, Djaldetti R, Salman H, Bergman M, Djaldetti M (1999) IL-1 beta, IL-2, IL-6 and TNF-alpha production by peripheral blood mononuclear cells from patients with Parkinson’s disease. Biomed Pharmacother 53:141–145

    Article  CAS  PubMed  Google Scholar 

  • Björklund A (1991) Neural transplantation—an experimental tool with clinical possibilities. Trends Neurosci 14:319–322

    Google Scholar 

  • Boka G, Anglade P, Wallach D, Javoy-Agid F, Agid Y, Hirsch EC (1994) Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson’s disease. Neurosci Lett 172:151–154

    Article  CAS  PubMed  Google Scholar 

  • Burke RE, Antonelli M, Sulzer D (1998) Glial cell line-derived neurotrophic growth factor inhibits apoptotic death of postnatal substantia nigra dopamine neurons in primary culture. J Neurochem 71:517–525

    CAS  PubMed  Google Scholar 

  • Casals J, Elizan TS, Yahr MD (1998) Postencephalitic parkinsonism—a review. J Neural Transm 105:645–976

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Vartiainen NE, Ying W, Chan PH, Koistinaho J, Swanson RA (2004) Astrocytes protect neurons from nitric oxide toxicity by a glutathione-dependent mechanism. J Neurochem 77:1601–1610

    Article  Google Scholar 

  • Cicchetti F, Brownell AL, Williams K, Chen YI, Livni E, Isacson O (2002) Neuroinflammation of the nigrostriatal pathway during progressive 6-OHDA dopamine degeneration in rats monitored by immunohistochemistry and PET imaging. Eur J Neurosci 15:991–998

    Article  CAS  PubMed  Google Scholar 

  • Czlonkowska A, Kohutnicka M, Kurkowska-Jastrzebska I, Czlonkowski A (1996) Microglial reaction in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) induced Parkinson’s disease mice model. Neurodegeneration 5:137–143

    Article  CAS  PubMed  Google Scholar 

  • Damier P, Hirsch EC, Zhang P, Agid Y, Javoy-Agid F (1993) Glutathione peroxidase, glial cells and Parkinson’s disease. Neuroscience 52:1–6

    Article  CAS  PubMed  Google Scholar 

  • Dauer W, Przedborski S (2004) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    Article  Google Scholar 

  • Declercq W, Denecker G, Fiers W, Vandenabeele P (1998) Cooperation of both TNF receptors in inducing apoptosis: involvement of the TNF receptor-associated factor binding domain of the TNF receptor 75. J Immunol 161:390–399

    CAS  PubMed  Google Scholar 

  • Dehmer T, Lindenau J, Haid S, Dichgans J, Schulz JB (2000) Deficiency of inducible nitric oxide synthase protects against MPTP toxicity in vivo. J Neurochem 74:2213–2216

    Article  CAS  PubMed  Google Scholar 

  • Dehmer T, Heneka MT, Sastre M, Dichgans J, Schulz JB (2004) Protection by pioglitazone in the MPTP model of Parkinson’s disease correlates with IkappaBalpha induction and block of NFkappaB and iNOS activation. J Neurochem 88:494–501

    CAS  PubMed  Google Scholar 

  • DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285

    Article  CAS  PubMed  Google Scholar 

  • Depino AM, Earl C, Kaczmarczyk E, Ferrari C, Besedovsky H, del Rey A, Pitossi FJ, Oertel WH (2003) Microglial activation with atypical proinflammatory cytokine expression in a rat model of Parkinson’s disease. Eur J Neurosci 18:2731–2742

    Article  PubMed  Google Scholar 

  • DiMauro S (1993) Mitochondrial involvement in Parkinson’s disease: the controversy continues. Neurology 43:2170–2172

    CAS  PubMed  Google Scholar 

  • Ding M, St Pierre BA, Parkinson JF, Medberry P, Wong JL, Rogers NE, Ignarro LJ, Merrill JE (1997) Inducible nitric-oxide synthase and nitric oxide production in human fetal astrocytes and microglia. A kinetic analysis. J Biol Chem 272:11327–11335

    Article  CAS  PubMed  Google Scholar 

  • Eberhardt O, Coelln RV, Kugler S, Lindenau J, Rathke-Hartlieb S, Gerhardt E, Haid S, Isenmann S, Gravel C, Srinivasan A, Bahr M, Weller M, Dichgans J, Schulz JB (2000) Protection by synergistic effects of adenovirus-mediated X-chromosome-linked inhibitor of apoptosis and glial cell line-derived neurotrophic factor gene transfer in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. J Neurosci 20:9126–9134

    CAS  PubMed  Google Scholar 

  • Eddleston M, Mucke L (1993) Molecular profile of reactive astrocytes—implications for their role in neurologic disease. Neuroscience 54:15–36

    Article  CAS  PubMed  Google Scholar 

  • Evert BO, Vogt IR, Kindermann C, Ozimek L, de Vos RA, Brunt ER, Schmitt I, Klockgether T, Wullner U (2001) Inflammatory genes are upregulated in expanded ataxin-3-expressing cell lines and spinocerebellar ataxia type 3 brains. J Neurosci 21:5389–5396

    CAS  PubMed  Google Scholar 

  • Factor SA, Sanchez-Ramos J, Weiner WJ (1988) Trauma as an etiology of parkinsonism: a historical review of the concept. Mov Disord 3:30–36

    CAS  PubMed  Google Scholar 

  • Fahn S (1989) Adverse effects of levodopa in Parkinson’s disease. In: Calne DB (ed) Handbook of experimental pharmacology, vol 8. Springer, Berlin Heidelberg New York, pp 386–409

    Google Scholar 

  • Fahn S, Cohen G (1992) The oxidant stress hypothesis in Parkinson’s disease: evidence supporting it. Ann Neurol 32:804–812

    CAS  PubMed  Google Scholar 

  • Fahn S, Przedborski S (2000) Parkinsonism. In: Rowland LP (ed) Merritt’s neurology. Lippincott Williams & Wilkins, New York, pp 679–693

    Google Scholar 

  • Faull RL, Laverty R (1969) Changes in dopamine levels in the corpus striatum following lesions in the substantia nigra. Exp Neurol 23:332–340

    Article  CAS  PubMed  Google Scholar 

  • Feng Z, Wang T, Li D, Fung P, Wilson B, Liu B, Ali S, Langenbach R, Hong J (2002) Cyclooxygenase-2-deficient mice are resistant to 1-methyl-4-phenyl1,2,3,6-tetrahydropyridine-induced damage of dopaminergic neurons in the substantia nigra. Neurosci Lett 329:354

    Article  CAS  PubMed  Google Scholar 

  • Ferger B, Leng A, Mura A, Hengerer B, Feldon J (2004) Genetic ablation of tumor necrosis factor-alpha (TNF-alpha) and pharmacological inhibition of TNF-synthesis attenuates MPTP toxicity in mouse striatum. J Neurochem 89:822–833

    CAS  PubMed  Google Scholar 

  • Ferrer I, Blanco R, Carmona M, Puig B, Barrachina M, Gomez C, Ambrosio S (2001) Active, phosphorylation-dependent mitogen-activated protein kinase (MAPK/ERK), stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and p38 kinase expression in Parkinson’s disease and dementia with Lewy bodies. J Neural Transm 108:1383–1396

    Article  CAS  PubMed  Google Scholar 

  • Forno LS, DeLanney LE, Irwin I, Di Monte D, Langston JW (1992) Astrocytes and Parkinson’s disease. Prog Brain Res 94:429–436

    CAS  PubMed  Google Scholar 

  • Forno LS, Langston JW, DeLanney LE, Irwin I, Ricaurte GA (1986) Locus ceruleus lesions and eosinophilic inclusions in MPTP-treated monkeys. Ann Neurol 20:449–455

    CAS  PubMed  Google Scholar 

  • Forno LS, DeLanney LE, Irwin I, Langston JW (1993) Similarities and differences between MPTP-induced parkinsonism and Parkinson’s disease: neuropathologic considerations. Adv Neurol 60:600–608

    CAS  PubMed  Google Scholar 

  • Frim DM, Uhler TA, Galpern WR, Beal MF, Breakefield XO, Isacson O (1994) Implanted fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevent 1-methyl-4-phenylpyridinium toxicity to dopaminergic neurons in the rat. Proc Natl Acad Sci USA 91:5104–5108

    CAS  PubMed  Google Scholar 

  • Gash DM, Zhang ZM, Ovadia A, Cass WA, Yi A, Simmerman L, Russell D, Martin D, Lapchak PA, Collins F, Hoffer BJ, Gerhardt GA (1996) Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380:252–255

    Article  CAS  PubMed  Google Scholar 

  • Gehrmann J, Matsumoto Y, Kreutzberg GW (1995) Microglia: intrinsic immuneffector cell of the brain. Brain Res Brain Res Rev 20:269–287

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Karin M (2002) Missing pieces in the NF-kappaB puzzle. Cell 109:S81–S96

    Article  CAS  PubMed  Google Scholar 

  • Giasson BI, Duda JE, Murray IV, Chen Q, Souza JM, Hurtig HI, Ischiropoulos H, Trojanowski JQ, Lee VM (2000) Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 290:985–989

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Patel NK, Hotton GR, O’Sullivan K, McCarter R, Bunnage M, Brooks DJ, Svendsen CN, Heywood P (2003) Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 9:589–595

    Article  CAS  PubMed  Google Scholar 

  • Giulian D, Woodward J, Young DG, Krebs JF, Lachman LB (1988) Interleukin-1 injected into mammalian brain stimulates astrogliosis and neovascularization. J Neurosci 8:2485–2490

    CAS  PubMed  Google Scholar 

  • Gluck MR, Youngster SK, Ramsay RR, Singer TP, Nicklas WJ (1994) Studies on the characterization of the inhibitory mechanism of 4′-alkylated 1-methyl-4-phenylpyridinium and phenylpyridine analogues in mitochondria and electron transport particles. J Neurochem 63:655–661

    CAS  PubMed  Google Scholar 

  • Gordon MN, Schreier WA, Ou X, Holcomb LA, Morgan DG (1997) Exaggerated astrocyte reactivity after nigrostriatal deafferentation in the aged rat. J Comp Neurol 388:106–119

    Article  CAS  PubMed  Google Scholar 

  • Green DR (1998) Apoptotic pathways: the roads to ruin. Cell 94:695–698

    Article  CAS  PubMed  Google Scholar 

  • Greenamyre JT, MacKenzie G, Peng TI, Stephans SE (1999) Mitochondrial dysfunction in Parkinson’s disease. Biochem Soc Symp 66:85–97

    CAS  PubMed  Google Scholar 

  • Hantraye P, Brouillet E, Ferrante R, Palfi S, Dolan R, Matthews RT, Beal MF (1996) Inhibition of neuronal nitric oxide synthase prevents MPTP-induced parkinsonism in baboons. Nature Med 2:1017–1021

    CAS  PubMed  Google Scholar 

  • Hartmann A, Hunot S, Michel PP, Muriel MP, Vyas S, Faucheux BA, Mouatt-Prigent A, Turmel H, Srinivasan A, Ruberg M, Evan GI, Agid Y, Hirsch EC (2000) Caspase-3: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease. Proc Natl Acad Sci USA 97:2875–2880

    Article  CAS  PubMed  Google Scholar 

  • Hartmann A, Troadec JD, Hunot S, Kikly K, Faucheux BA, Mouatt-Prigent A, Ruberg M, Agid Y, Hirsch EC (2001) Caspase-8 is an effector in apoptotic death of dopaminergic neurons in Parkinson’s disease, but pathway inhibition results in neuronal necrosis. J Neurosci 21:2247–2255

    CAS  PubMed  Google Scholar 

  • Hartmann A, Mouatt-Prigent A, Faucheux BA, Agid Y, Hirsch EC (2002) FADD: a link between TNF family receptors and caspases in Parkinson’s disease. Neurology 22:308–310

    Google Scholar 

  • Hastings TG (1995) Enzymatic oxidation of dopamine: the role of prostaglandin H synthase. J Neurochem 64:919–924

    CAS  PubMed  Google Scholar 

  • Hayley S, Crocker SJ, Smith PD, Shree T, Jackson-Lewis V, Przedborski S, Mount M, Slack R, Anisman H, Park DS (2004) Regulation of dopaminergic loss by Fas in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. J Neurosci 24:2045–2053

    Article  CAS  PubMed  Google Scholar 

  • Heikkila RE, Sieber BA, Manzino L, Sonsalla PK (1989) Some features of the nigrostriatal dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the mouse. Mol Chem Neuropathol 10:171–183

    CAS  PubMed  Google Scholar 

  • Hirsch S, Bahr M (1999) Growth promoting and inhibitory effects of glial cells in the mammalian nervous system. Adv Exp Med Biol 468:199–205

    CAS  PubMed  Google Scholar 

  • Hirsch EC, Hunot S, Damier P, Brugg B, Faucheux BA, Michel PP, Ruberg M, Muriel MP, Mouatt-Prigent A, Agid Y (1999) Glial cell participation in the degeneration of dopaminergic neurons in Parkinson’s disease. Adv Neurol 80:9–18

    CAS  PubMed  Google Scholar 

  • Hökfelt T, Ungerstedt U (1973) Specificity of 6-hydroxydopamine induced degeneration of central monoamine neurones: an electron and fluorescence microscopic study with special reference to intracerebral injection on the nigro-striatal dopamine system. Brain Res 12:269–297

    Article  Google Scholar 

  • Hunot S, Boissière F, Faucheux B, Brugg B, Mouatt-Prigent A, Agid Y, Hirsch EC (1996) Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience 72:355–363

    Article  CAS  PubMed  Google Scholar 

  • Hunot S, Brugg B, Ricard D, Michel PP, Muriel MP, Ruberg M, Faucheux BA, Agid Y, Hirsch EC (1997) Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with Parkinson disease. Proc Natl Acad Sci USA 94:7531–7536

    Article  CAS  PubMed  Google Scholar 

  • Hunot S, Dugas N, Faucheux B, Hartmann A, Tardieu M, Debre P, Agid Y, Dugas B, Hirsch EC (1999) FcɛRII/CD23 is expressed in Parkinson’s disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells. J Neurosci 19:3440–3447

    CAS  PubMed  Google Scholar 

  • Ijzermans JN, Marquet RL (1989) Interferon-gamma: a review. Immunobiology 179:456–473

    CAS  PubMed  Google Scholar 

  • Janabi N, Chabrier S, Tardieu M (1996) Endogenous nitric oxide activates prostaglandin F2 alpha production in human microglial cells but not in astrocytes: a study of interactions between eicosanoids, nitric oxide, and superoxide anion (O2) regulatory pathways. J Immunol 157:2129–2135

    CAS  PubMed  Google Scholar 

  • Javoy F, Sotelo C, Herbert A, Agid Y (1976) Specificity of dopaminergic neuronal degeneration induced by intracerebral injection of 6-hydroxydopamine in the nigrostriatal dopamine system. Brain Res 102:210–215

    Article  Google Scholar 

  • Jiang H, Jackson-Lewis V, Muthane U, Dollison A, Ferreira M, Espinosa A, Parsons B, Przedborski S (1993) Adenosine receptor antagonists potentiate dopamine receptor agonist-induced rotational behavior in 6-hydroxydopamine-lesioned rats. Brain Res 613:347–351

    Article  CAS  PubMed  Google Scholar 

  • Kandel ER (2000) Nerve cells and behavior. In: Kandel ER, Schwartz JH, Jessell TM (eds) Principles of neural science. McGraw-Hill, New York, pp 19–35

    Google Scholar 

  • Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, Hong JS (2000) Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci 20:6309–6316

    CAS  PubMed  Google Scholar 

  • Knott C, Stern G, Wilkin GP (2000) Inflammatory regulators in Parkinson’s disease: iNOS, lipocortin-1, and cyclooxygenases-1 and -2. Mol Cell Neurosci 16:724–739

    Article  CAS  PubMed  Google Scholar 

  • Kohutnicka M, Lewandowska E, Kurkowska-Jastrzebska I, Czlonkowski A, Czlonkowska A (1998) Microglial and astrocytic involvement in a murine model of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Immunopharmacology 39:167–180

    Article  CAS  PubMed  Google Scholar 

  • Kopin IJ, Markey SP (1988) MPTP toxicity: implication for research in Parkinson’s disease. Annu Rev Neurosci 11:81–96

    Article  CAS  PubMed  Google Scholar 

  • Kordower JH, Palfi S, Chen EY, Ma SY, Sendera T, Cochran EJ, Cochran EJ, Mufson EJ, Penn R, Goetz CG, Comella CD (1999) Clinicopathological findings following intraventricular glial-derived neurotrophic factor treatment in a patient with Parkinson’s disease. Ann Neurol 46:419–424

    Article  CAS  PubMed  Google Scholar 

  • Kordower JH, Emborg ME, Bloch J, Ma SY, Chu Y, Leventhal L, McBride J, Chen EY, Palfi S, Roitberg BZ, Brown WD, Holden JE, Pyzalski R, Taylor MD, Carvey P, Ling Z, Trono D, Hantraye P, Deglon N, Aebischer P (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 290:767–773

    Article  CAS  PubMed  Google Scholar 

  • Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    Article  CAS  PubMed  Google Scholar 

  • Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Pzuntek H, Epplen JT, Schols L, Riess O (1998) Ala30Pro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nature Genet 18:107–108

    Google Scholar 

  • Kujubu DA, Fletcher BS, Varnum BC, Lim RW, Herschman HR (1991) TIS10, a phorbol ester tumor promoter-inducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin synthase/cyclooxygenase homologue. J Biol Chem 266:12866–12872

    Google Scholar 

  • Langston JW (1987) MPTP: the promise of a new neurotoxin. In: Marsden CD, Fahn S (eds) Movement disorders 2. Butterworths, London, pp 73–90

    Google Scholar 

  • Langston JW, Irwin I (1986) MPTP: current concepts and controversies. Clin Neuropharmacol 9:485–507

    CAS  Google Scholar 

  • Langston JW, Ballard P, Irwin I (1983) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980

    CAS  PubMed  Google Scholar 

  • Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D (1999) Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol 46:598–605

    Article  CAS  PubMed  Google Scholar 

  • Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39:151–170

    Article  CAS  PubMed  Google Scholar 

  • Levivier M, Przedborski S, Bencsics C, Kang UJ (1995) Intrastriatal implantation of fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevents degeneration of dopaminergic neurons in a rat model of Parkinson’s disease. J Neurosci 15:7810–7820

    CAS  PubMed  Google Scholar 

  • Liberatore G, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WJ, Dawson VL, Dawson TM, Przedborski S (1999) Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. Nat Med 5:1403–1409

    Article  CAS  PubMed  Google Scholar 

  • Ling Z, Gayle DA, Ma SY, Lipton JW, Tong CW, Hong JS, Carvey PM (2002) In utero bacterial endotoxin exposure causes loss of tyrosine hydroxylase neurons in the postnatal rat midbrain. Mov Disord 17:116–124

    Article  PubMed  Google Scholar 

  • Liu J, Zhao ML, Brosnan CF, Lee SC (1996) Expression of type II nitric oxide synthase in primary human astrocytes and microglia: role of IL-1beta and IL-1 receptor antagonist. J Immunol 157:3569–3676

    CAS  PubMed  Google Scholar 

  • Lucas R, Garcia I, Donati YR, Hribar M, Mandriota SJ, Giroud C, Buurman WA, Fransen L, Suter PM, Nunez G, Pepper MS, Grau GE (1998) Both TNF receptors are required for direct TNF-mediated cytotoxicity in microvascular endothelial cells. Eur J Immunol 28:3577–3586

    CAS  PubMed  Google Scholar 

  • Mattammal MB, Strong R, Lakshmi VM, Chung HD, Stephenson AH (1995) Prostaglandin H synthetase-mediated metabolism of dopamine: implication for Parkinson’s disease. J Neurochem 64:1645–1654

    CAS  PubMed  Google Scholar 

  • McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38:1285–1291

    CAS  PubMed  Google Scholar 

  • McGeer PL, Schwab C, Parent A, Doudet D (2003) Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration. Ann Neurol 54:599–604

    Article  CAS  PubMed  Google Scholar 

  • McNaught KS, Jenner P (1999) Altered glial function causes neuronal death and increases neuronal susceptibility to 1-methyl-4-phenylpyridinium- and 6-hydroxydopamine-induced toxicity in astrocytic/ventral mesencephalic co-cultures. J Neurochem 73:2476

    Article  Google Scholar 

  • Mege JL, Capo C, Michel B, Gastaut JL, Bongrand P (1988) Phagocytic cell function in aged subjects. Neurobiol Aging 9:217–220

    CAS  PubMed  Google Scholar 

  • Meredith GE, Totterdell S, Dervan AG, Lau YS (2002) Alpha synuclein inclusions are associated with a persistent microglial reaction in a chronic mouse model of Parkinson’s diseaseAbstract viewer/iterinary planner. Online Program No. 386.12.2002. Society for Neuroscience, Washington D.C.

    Google Scholar 

  • Mirjany M, Ho L, Pasinetti GM (2002) Role of cyclooxygenase-2 in neuronal cell cycle activity and glutamate-mediated excitotoxicity. J Pharmacol Exp Ther 301:494–500

    Article  CAS  PubMed  Google Scholar 

  • Mirza B, Hadberg H, Thomsen P, Moos T (2000) The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson’s disease. Neuroscience 95:425–432

    Article  CAS  PubMed  Google Scholar 

  • Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T (1994) Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett 165:208–210

    Article  CAS  PubMed  Google Scholar 

  • Mogi M, Harada M, Kondo T, Riederer P, Nagatsu T (1995) Brain beta 2-microglobulin levels are elevated in the striatum in Parkinson’s disease. J Neural Transm Park Dis Dement Sect 9:87–92

    CAS  PubMed  Google Scholar 

  • Mogi M, Togari A, Kondo T, Mizuno Y, Komure O, Kuno S, Ichinose H, Nagatsu T (2000) Caspase activities and tumor necrosis factor receptor R1 (p55) level are elevated in the substantia nigra from parkinsonian brain. J Neural Transm 107:335–341

    Article  CAS  PubMed  Google Scholar 

  • Moratalla R, Quinn B, DeLanney LE, Irwin I, Langston JW, Graybiel AM (1992) Differential vulnerability of primate caudate-putamen and striosome-matrix dopamine systems to the neurotoxic effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci USA 89:3859–3863

    CAS  PubMed  Google Scholar 

  • Muthane U, Ramsay KA, Jiang H, Jackson-Lewis V, Donaldson D, Fernando S, Ferreira M, Przedborski S (1994) Differences in nigral neuron number and sensitivity to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in C57/bl and CD-1mice. Exp Neurol 126:195–204

    Article  CAS  PubMed  Google Scholar 

  • Nagata K, Takei N, Nakajima K, Saito H, Kohsaka S (1993) Microglial conditioned medium promotes survival and development of cultured mesencephalic neurons from embryonic rat brain. J Neurosci Res 34:357–363

    CAS  PubMed  Google Scholar 

  • Nagatsu T, Mogi M, Ichinose H, Togari A (2000) Changes in cytokines and neurotrophins in Parkinson’s disease. J Neural Transm Suppl 60:277–290

    PubMed  Google Scholar 

  • Nathan C, Xie QW (1994) Regulation of biosynthesis of nitric oxide. J Biol Chem 269:13725–13728

    CAS  PubMed  Google Scholar 

  • Neve KA, Kozlowski MR, Marshall JF (1982) Plasticity of neostriatal dopamine receptors after nigrostriatal injury: relationship to recovery of sensorimotor functions and behavioral supersensitivity. Brain Res 244:33–44

    Article  CAS  PubMed  Google Scholar 

  • Nicklas WJ, Yougster SK, Kindt MV, Heikkila RE (1987) MPTP, MPP+ and mitochondrial function. Life Sci 40:721–729

    Article  CAS  PubMed  Google Scholar 

  • Nogawa S, Zhang F, Ross ME, Iadecola C (1997) Cyclo-oxygenase-2 gene expression in neurons contributes to ischemic brain damage. J Neurosci 17:2746–2755

    CAS  PubMed  Google Scholar 

  • Nomura Y (2001) NF-kappaB activation and IkappaB alpha dynamism involved in iNOS and chemokine induction in astroglial cells. Life Sci 68:1695–1701

    Article  CAS  PubMed  Google Scholar 

  • O’Banion MK (1999) Cyclooxygenase-2: molecular biology, pharmacology, and neurobiology. Crit Rev Neurobiol 13:45–82

    CAS  PubMed  Google Scholar 

  • O’Banion MK, Sadowski HB, Winn V, Young DA (1991) A serum- and glucocorticoid-regulated 4-kilobase mRNA encodes a cyclooxygenase-related protein. J Biol Chem 266:23261–23267

    Google Scholar 

  • O’Callaghan JP, Miller DB, Reinhard JF (1990) Characterization of the origins of astrocyte response to injury using the dopaminergic neurotoxicant, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Brain Res 521:73–80

    Article  CAS  PubMed  Google Scholar 

  • Pasinetti GM, Hassler M, Stone D, Finch CE (1999) Glial gene expression during aging in rat striatum and in long-term responses to 6-OHDA lesions. Synapse 31:278–284

    Article  CAS  PubMed  Google Scholar 

  • Peterson PK, Hu S, Anderson WR, Chao CC (1994) Nitric oxide production and neurotoxicity mediated by activated microglia from human versus mouse brain. J Infect Dis 170:457–460

    CAS  PubMed  Google Scholar 

  • Pickel VM, Beckley SC, Joh TH, Reis D (1981) Ultrastructure immunocytochemical localization of tyrosine hydroxylase in the neostriatum. Brain Res 225:373–385

    Article  CAS  PubMed  Google Scholar 

  • Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047

    Article  CAS  PubMed  Google Scholar 

  • Przedborski S, Jackson-Lewis V (2000) ROS and Parkinson’s disease: a view to a kill. In: Poli G, Cadenas E, Packer L (eds) Free radicals in brain pathophysiology. Dekker, New York, pp 273–290

    Google Scholar 

  • Przedborski S, Kostic V, Jackson-Lewis V, Naini AB, Simonetti S, Fahn S, Carlson E, Epstein CJ, Cadet JL (1992) Transgenic mice with increased Cu/Zn-superoxide dismutase activity are resistant to N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. J Neurosci 12:1658–1667

    CAS  PubMed  Google Scholar 

  • Przedborski S, Jackson-Lewis V, Djaldetti R, Liberatore G, Vila M, Vukosavic S, Almer G (2000) The parkinsonian toxin MPTP: action and mechanism. Restor Neurol Neurosci 16:135–142

    CAS  PubMed  Google Scholar 

  • Przedborski S, Chen Q, Vila M, Giasson BI, Djaldatti R, Vukosavic S, Souza JM, Jackson-Lewis V, Lee VM, Ischiropoulos H (2001) Oxidative post-translational modifications of alpha-synuclein in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease. J Neurochem 76:637–640

    Article  CAS  PubMed  Google Scholar 

  • Przedborski S, Jackson-Lewis V, Vila M, Wu DC, Teismann P, Tieu K, Choi D-K, Cohen O (2003) Free radical and nitric oxide toxicity in Parkinson’s disease. In: Gordin A, Kaakkola S, Teräväinen H (eds) Parkinson’s disease. Lippincott Williams & Wilkins, Philadelphia, pp 83–94

    Google Scholar 

  • Ranje C, Ungerstedt U (1977) Lack of acquisition in dopamine denervated animals tested in an underwater Y-maze. Brain Res 134:95–111

    Article  CAS  PubMed  Google Scholar 

  • Reading PJ, Dunnett SB (1994) 6-Hydroxydopamine lesions of nigrostriatal neurons as an animal model of Parkinson’s disease. In: Woodruff ML, Nonnemann AJ (eds) Toxin-induced models of neurological disorders. Plenum, New York, pp 89–119

    Google Scholar 

  • Robertson HA (1992) Dopamine receptor interactions: some implications for the treatment of Parkinson’s disease. Trends Neurosci 15:201–206

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues RW, Gomide VC, Chadi G (2001) Astroglial and microglial reaction after a partial nigrostriatal degeneration induced by the striatal injection of different doses of 6-hydroxydopamine. Int J Neurosci 109:91–126

    CAS  PubMed  Google Scholar 

  • Sachs C, Jonsson G (1975) Mechanisms of action of 6-hydroxydopamine. Biochem Pharmacol 24:1–8

    Article  CAS  PubMed  Google Scholar 

  • Sauer H, Oertel WH (1994) Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: a combined retrograde tracing and immunocytochemical study in the rat. Neuroscience 59:401–415

    Article  CAS  PubMed  Google Scholar 

  • Saura J, Pares M, Bove J, Pezzi S, Alberch J, Marin C, Tolosa E, Marti MJ (2003) Intranigral infusion of interleukin-1beta activates astrocytes and protects from subsequent 6-hydroxydopamine neurotoxicity. J Neurochem 85:651–661

    Article  CAS  PubMed  Google Scholar 

  • Schulz JB, Matthews RT, Muqit MMK, Browne SE, Beal MF (1995) Inhibition of neuronal nitric oxide synthase by 7-nitroindazole protects against MPTP-induced neurotoxicity in mice. J Neurochem 64:936–939

    CAS  PubMed  Google Scholar 

  • Schulz JB, Lindenau J, Seyfried J, Dichgans J (2000) Glutathione, oxidative stress and neurodegeneration. Eur J Biochem 267:4904–4911

    Article  CAS  PubMed  Google Scholar 

  • Seniuk NA, Tatton WG, Greenwood CE (1990) Dose-dependent destruction of the coeruleus–cortical and nigral–striatal projections by MPTP. Brain Res 527:7–20

    Article  CAS  PubMed  Google Scholar 

  • Sheng JG, Shirabe S, Nishiyama N, Schwartz JP (1993) Alterations in striatal glial fibrillary acidic protein expression in response to 6-hydroxydopamine-induced denervation. Exp Brain Res 95:450–456

    CAS  PubMed  Google Scholar 

  • Smith WL, Marnett LJ, DeWitt DL (1991) Prostaglandin and thromboxane biosynthesis. Pharmacol Ther 49:153–179

    Google Scholar 

  • Sortwell CE, Daley BF, Pitzer MR, McGuire SO, Sladek JR, Collier TJ (2000) Oligodendrocyte-type 2 astrocyte-derived trophic factors increase survival of developing dopamine neurons through the inhibition of apoptotic cell death. J Comp Neurol 426:143–153

    Article  CAS  PubMed  Google Scholar 

  • Sotelo C, Javoy F, Agid Y, Glowinski J (1973) Injection of 6-hydroxydopamine in the substantia nigra of the rat. I. Morphological study. Brain Res 58:269–290

    Article  CAS  Google Scholar 

  • Spillantini MG, Schmidt ML, Lee VMY, Trojanowski JQ, Roos J, Goedert M (1997) α-Synuclein in Lewy bodies. Nature 388:839–840

    Article  CAS  PubMed  Google Scholar 

  • Spina MB, Squinto SP, Miller J, Lindsay RM, Hyman C (1992) Brain-derived neurotrophic factor protects dopamine neurons against 6-hydroxydopamine and N-methyl-4-phenylpyridinium ion toxicity: involvement of the glutathione system. J Neurochem 59:99–106

    CAS  PubMed  Google Scholar 

  • Sriram K, Matheson JM, Benkovic SA, Miller DB, Luster MI, O’Callaghan JP (2002) Mice deficient in TNF receptors are protected against dopaminergic neurotoxicity: implications for Parkinson’s disease. FASEB J 16:1474–1476

    CAS  PubMed  Google Scholar 

  • Stefanis L, Larsen KE, Rideout HJ, Sulzer D, Greene LA (2001) Expression of A53T mutant but not wild-type alpha-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J Neurosci 21:9549–9560

    CAS  PubMed  Google Scholar 

  • Stromberg I, Bjorklund H, Dahl D, Jonsson G, Sundstrom E, Olson L (1986) Astrocyte responses to dopaminergic denervations by 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine as evidenced by glial fibrillary acidic protein immunohistochemistry. Brain Res Bull 17:225–236

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Engelender S, Igarashi S, Rao RK, Wanner T, Tanzi RE, Sawa A, Dawson VL, Dawson TM, Ross CA (2001) Inducible expression of mutant alpha-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis. Hum Mol Genet 10:919–926

    Article  CAS  PubMed  Google Scholar 

  • Teismann P, Ferger B (2001) Inhibition of the cyclooxygenase isoenzymes COX-1 and COX-2 provide neuroprotection in the MPTP-mouse model of Parkinson’s disease. Synapse 39:167–174

    Article  CAS  PubMed  Google Scholar 

  • Teismann P, Schwaninger M, Weih F, Ferger B (2001) Nuclear factor-kappaB activation is not involved in a MPTP model of Parkinson’s disease. Neuroreport 12:1049–1053

    Article  CAS  PubMed  Google Scholar 

  • Teismann P, Tieu K, Choi DK, Wu DC, Naini A, Hunot S, Vila M, Jackson-Lewis V, Przedborski S (2003) Cyclooxygenase-2 is instrumental in Parkinson’s disease neurodegeneration. Proc Natl Acad Sci USA 100:5473–5478

    Article  CAS  PubMed  Google Scholar 

  • Tennyson VM, Heikkila R, Mytilineou C, Cote L, Cohen G (1974) 5-Hydroxydopamine ‘tagged’ neuronal boutons in rabbit neostriatum: interrelationship between vesicles and axonal membrane. Brain Res 82:341–348

    Article  CAS  PubMed  Google Scholar 

  • Testi R (1996) Sphingomyelin breakdown and cell fate. Trends Biochem Sci 21:468–471

    Article  CAS  PubMed  Google Scholar 

  • Törnwall M, Männistö PT (1993) Effects of three types of catechol O-methylation inhibitors on L-3,4-dihydroxyphenylalanine-induced circling behaviour in rats. Eur J Pharmacol 250:77–84

    Article  PubMed  Google Scholar 

  • Tranzer JP, Thoenen H (1968) An electron microscopic study of selective, acute degeneration of sympathetic nerve terminals after administration of 6-hydroxydopamine. Experientia 24:155–156

    CAS  PubMed  Google Scholar 

  • Ungerstedt U (1968) 6-Hydroxydopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 5:107–110

    Article  CAS  PubMed  Google Scholar 

  • Ungerstedt U (1971a) Postsynaptique supersensitivity after 6-hydroxydopamine induced degeneration of the nigro-striatal system in the rat brain. Acta Physiol Scand Suppl 367:69–93

    CAS  PubMed  Google Scholar 

  • Ungerstedt U (1971b) Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behaviour. Acta Physiol Scand Suppl 367:49–68

    CAS  PubMed  Google Scholar 

  • Ungerstedt U, Arbuthnott G (1970) Quantitative recording of rotational behaviour in rats after 6-hydroxydopamine lesions of the nigrostriatal dopamine system. Brain Res 24:485–493

    Article  CAS  PubMed  Google Scholar 

  • Uretsky NJ, Iversen LL (1969) Effects of 6-hydroxydopamine on noradrenaline-containing neurones in the rat brain. Nature 221:557–559

    CAS  PubMed  Google Scholar 

  • Vila M, Jackson Lewis V, Guégan C, Wu DC, Teismann P, Choi D-K, Tieu K, Przedborski S (2001) The role of glial cells in Parkinson’s disease. Curr Opin Neurol 14:483–489

    Article  CAS  PubMed  Google Scholar 

  • Wakabayashi K, Hayashi S, Yoshimoto M, Kudo H, Takahashi H (2000) NACP/alpha-synuclein-positive filamentous inclusions in astrocytes and oligodendrocytes of Parkinson’s disease brains. Acta Neuropathol 99:14–20

    Article  CAS  PubMed  Google Scholar 

  • Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC (2003) Alpha-Synuclein is degraded by both autophagy and the proteasome. J Biol Chem 278:25009–25013

    Article  CAS  PubMed  Google Scholar 

  • Wilkin GP, Knott C (1999) Glia: a curtain raiser. Adv Neurol 80:3–7

    CAS  PubMed  Google Scholar 

  • Wood TK, Sullivan AM, McDermott KW (2003) Viability of dopaminergic neurones is influenced by serum and astroglial cells in vitro. J Neurocytol 32:97–103

    Article  CAS  PubMed  Google Scholar 

  • Wu DC, Teismann P, Tieu K, Vila M, Jackson-Lewis V, Ischiropoulos H, Przedborski S (2003) NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci USA 100:6145–6150

    Article  CAS  PubMed  Google Scholar 

  • Xia Y, Zweier JL (1997) Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages. Proc Natl Acad Sci USA 94:6954–6958

    Article  CAS  PubMed  Google Scholar 

  • Yurek DM, Sladek JR Jr (1990) Dopamine cell replacement: Parkinson’s disease. Annu Rev Neurosci 13:415–440

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Teismann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teismann, P., Schulz, J.B. Cellular pathology of Parkinson’s disease: astrocytes, microglia and inflammation. Cell Tissue Res 318, 149–161 (2004). https://doi.org/10.1007/s00441-004-0944-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-004-0944-0

Keywords

Navigation