Skip to main content

Advertisement

Log in

The W258X mutation in SLC22A12 is the predominant cause of Japanese renal hypouricemia

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Recently, a urate transporter, hURAT1 (human uric acid transporter 1) encoded by SLC22A12, was isolated from the human kidney. hURAT1 is presumed to play the central role in reabsorption of urate from glomerular filtrate. In the present study, we analyzed SLC22A12 in seven unrelated Japanese patients with renal hypouricemia whose serum level of urate was less than 1.0 mg/dl, and their family members. We performed direct DNA sequencing of the exon and exon-intron boundaries of SLC22A12 using genomic DNA. Six of the seven patients (86%) possess mutations in SLC22A12. In five patients, a homozygous G to A transition at nucleotide 774 within exon 4 of SLC22A12, which forms a stop codon (TGA) at codon 258 (TGG), was identified (W258X). In one patient, the C to T transition within exon 3, which changes threonine at codon 217 to methionine (T217 M), and the W258X mutation were found (compound heterozygote). Thus, among 12 mutational alleles in six patients, 11 were the W258X mutation (92%). Family members with the heterozygous W258X mutation (carriers) show relatively low levels of serum urate. The present study demonstrates that homozygous W258X mutation is the predominant genetic cause of idiopathic renal hypouricemia in Japanese patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wu XW, Lee CC, Muzny DM, Caskey CT (1989) Urate oxidase: primary structure and evolutionary implications. Proc Natl Acad Sci U S A 86:9412–9416

    CAS  PubMed  Google Scholar 

  2. Wu XW, Muzny DM, Lee CC, Caskey C (1992) Two independent mutational events in the loss of urate oxidase during hominoid evolution. J Mol Evol 34:78–84

    CAS  PubMed  Google Scholar 

  3. Sperling O (1992) Renal hypouricemia: classification, tubular defect and clinical consequences. Contrib Nephrol 100:1–14

    CAS  PubMed  Google Scholar 

  4. Maesaka JK, Fishbane S (1998) Regulation of renal urate excretion: a critical review. Am J Kidney Dis 32:917–933

    CAS  PubMed  Google Scholar 

  5. Pritchard JB, Miller DS (1993) Mechanisms mediating renal secretion of organic anions and cations. Physiol Rev 73:765–796

    CAS  PubMed  Google Scholar 

  6. Halabe A, Sperling O (1994) Uric acid nephrolithiasis. Miner Electrolyte Metab 20:424–431

    CAS  PubMed  Google Scholar 

  7. Ishikawa I (2002) Acute renal failure with severe loin pain and patchy renal ischemia after anaerobic exercise in patients with or without renal hypouricemia. Nephron 91:559–570

    Article  PubMed  Google Scholar 

  8. Ishikawa I, Sakurai Y, Masuzaki S, Sugishita N, Shinoda A, Shikura N (1990) Exercise-induced acute renal failure in 3 patients with renal hypouricemia. Jpn J Nephrol 32:923–938

    CAS  Google Scholar 

  9. Igarashi T, Sekine T, Sugimura H, Hayakawa H, Arayama T (1993) Acute renal failure after exercise in a child with renal hypouricaemia. Pediatr Nephrol 7:292–293

    CAS  PubMed  Google Scholar 

  10. Hisanaga S, Kawamura M, Uchida T, Kondho H, Yoshida T (1994) Exercise-induced renal failure in a patient with hyperuricosuric hypouricemia. Nephron 66:475–476

    CAS  PubMed  Google Scholar 

  11. Murakami T, Kawakami H, Fukuda M, Furukawa S (1995) Patients with renal hypouricemia are prone to develop acute renal failure—why? Clin Nephrol 43:207–208

    CAS  PubMed  Google Scholar 

  12. Erley CM, Hirschberg RR, Hoefer W, Schaefer K (1989) Acute renal failure due to uric acid nephropathy in a patient with renal hypouricemia. Klin Wochenschr 67:308–312

    CAS  PubMed  Google Scholar 

  13. Yeun JY, Hasbargen JA (1995) Renal hypouricemia: prevention of exercise-induced acute renal failure and a review of the literature. Am J Kidney Dis 25:937–946

    CAS  PubMed  Google Scholar 

  14. Enomoto A, Kimura H, Chairoungdua A, Shigeta Y, Jutabha P, Cha SH, Hosoyamada M, Takeda M, Sekine T, Igarashi T, Matsuo H, Kikuchi Y, Oda T, Ichida K, Hosoya T, Shimokata K, Niwa T, Kanai Y, Endou H (2002) Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 417:447–452

    CAS  PubMed  Google Scholar 

  15. Sekine T, Cha SH, Endou H (2000) The multispecific organic anion transporter (OAT) family. Pflugers Arch 440:337–350

    Article  CAS  PubMed  Google Scholar 

  16. Russel FG, Masereeuw R, Aubel RA van (2002) Molecular aspects of renal anionic drug transport. Annu Rev Physiol 64:563–594

    Article  CAS  PubMed  Google Scholar 

  17. Lipkowitz MS, Leal-Pinto E, Rappoport JZ, Najfeld V, Abramson RG (2001) Functional reconstitution, membrane targeting, genomic structure, and chromosomal localization of a human urate transporter. J Clin Invest 107:1103–1115

    CAS  PubMed  Google Scholar 

  18. Leal-Pinto E, Cohen BE, Lipkowitz MS, Abramson RG (2002) Functional analysis and molecular model of the human urate transporter/channel, hUAT. Am J Physiol Renal Physiol 283:F150–F163

    CAS  PubMed  Google Scholar 

  19. Hisatome I, Ogino K, Kotake H, Ishiko R, Saito M, Hasegawa J, Mashiba H, Nakamoto S (1989) Cause of persistent hypouricemia in outpatients. Nephron 51:13–16

    CAS  PubMed  Google Scholar 

  20. Kotake T, Miura N, Ito H (1993) Renal tubular hypouricemia and calcium urolithiasis. Scanning Microsc 7:417–421

    CAS  PubMed  Google Scholar 

  21. Roch-Ramel F, Guisan B, Diezi J (1997) Effects of uricosuric and antiuricosuric agents on urate transport in human brush-border membrane vesicles. J Pharmacol Exp Ther 280:839–845

    CAS  PubMed  Google Scholar 

  22. Roch-Ramel F, Guisan B (1999) Renal transport of urate in humans. News Physiol Sci 14:80–84

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Japanese Ministry of Education, Science, Sports, and Culture (grant 13671101 and 15591089), The Kidney Foundation Japan (JFK 02–5), and The Morinaga Hoshi-kai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Sekine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komoda, F., Sekine, T., Inatomi, J. et al. The W258X mutation in SLC22A12 is the predominant cause of Japanese renal hypouricemia. Pediatr Nephrol 19, 728–733 (2004). https://doi.org/10.1007/s00467-004-1424-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-004-1424-1

Keywords

Navigation