Skip to main content

Advertisement

Log in

Interleukin 10 inhibits interferon γ- and tumor necrosis factor α-stimulated activation of NADPH oxidase 1 in human colonic epithelial cells and the mouse colon

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

NADPH oxidase 1 (Nox1) is preferentially expressed in the colon, but its functional role is not fully understood. This study was designed to elucidate a potential role of Nox1 in inflammation of the colon.

Methods

Superoxide production by T84 cells was measured by the cytochrome c method. Protein and mRNA levels of Nox1 and Nox organizer 1 (NOXO1) in the cells were measured by real-time reverse transcriptase PCR and Western blotting, respectively. Expression of Nox1, Nox2, dual oxidase 2 (Duox2), NOXO1, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α mRNAs was measured in proximal, middle, and distal portions of colonic mucosas from male wild-type C57BL/6J and interleukin (IL)-10 knockout mice at 6, 10, and 16 weeks of age. Grading of inflammation was done by scoring histological changes.

Results

IL-10 significantly inhibited IFN-γ- or TNF-α-induced up-regulation of superoxide-producing activity in T84 cells by suppressing expression of Nox1 mRNA and protein. IL-10 also inhibited TNF-α-stimulated induction of NOXO1 and p38 MAPK phosphorylation. Levels of Nox1, but not Nox2 or Duox2 mRNA, was age-dependently increased following a gradient with low levels in the proximal colon and high levels in the distal colon of the wild-type mice. The absence of IL-10 significantly facilitated Nox1 expression in association with increased IFN-γ mRNA expression before the development of spontaneous colitis and age-dependently accelerated their mRNA expression.

Conclusions

IL-10 may be a possible down-regulator of the Nox1-based oxidase in the colon, suggesting a potential role of reactive oxygen species (ROS) derived from Nox1-based oxidase in inflammation of the colon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bedard K, Krause K-H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87:245–313.

    Article  CAS  PubMed  Google Scholar 

  2. Lambeth JD, Kawahara T, Diebold B. Regulation of Nox and Duox enzymatic activity and expression. Free Radic Biol Med. 2007;43:319–31.

    Article  CAS  PubMed  Google Scholar 

  3. Rokutan K, Kawahara T, Kuwano Y, Tominaga K, Sekiyama A, Teshima-Kondo S. NADPH oxidases in the gastrointestinal tract: a potential role of Nox1 in innate immune response and carcinogenesis. Antioxid Redox Signal. 2006;8:1573–82.

    Article  CAS  PubMed  Google Scholar 

  4. Rokutan K, Kawahara T, Kuwano Y, Tominaga K, Nishida K, Teshima-Kondo S. Nox enzymes and oxidative stress in the immunopathology of the gastrointestinal tract. Semin Immunopathol. 2008;30:315–27.

    Article  CAS  PubMed  Google Scholar 

  5. Dupuy C, Ohayon R, Valent A, Noel-Hudson M-S, Deme D, Virion A. Purification of a novel flavoprotein involved in the thyroid NADPH oxidase. Cloning of the porcine and human cDNAs. J Biol Chem. 1999;274:37265–9.

    Article  CAS  PubMed  Google Scholar 

  6. De Deken X, Wang D, Many M-C, Costagliola S, Libert F, Vassart G, et al. Cloning of two human thyroid cDNAs encoding new members of the NADPH oxidase family. J Biol Chem. 2000;275:23227–33.

    Article  PubMed  Google Scholar 

  7. Geiszt M, Witta J, Baffi J, Lekstrom K, Leto TL. Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense. FASEB J. 2003;02-1104fje.

  8. Arbiser JL, Petros J, Klafter R, Govindajaran B, McLaughlin ER, Brown LF, et al. Reactive oxygen generated by Nox1 triggers the angiogenic switch. PNAS. 2002;99:715–20.

    Article  CAS  PubMed  Google Scholar 

  9. Arnold RS, Shi J, Murad E, Whalen AM, Sun CQ, Polavarapu R, et al. Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1. Proc Natl Acad Sci USA. 2001;98:5550–5.

    Article  CAS  PubMed  Google Scholar 

  10. Suh YA, Arnold RS, Lassegue B, Shi J, Xu X, Sorescu D, et al. Cell transformation by the superoxide-generating oxidase Mox1. Nature. 1999;401:79–82.

    Article  CAS  PubMed  Google Scholar 

  11. Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol. 2004;4:181–9.

    Article  CAS  PubMed  Google Scholar 

  12. Fukuyama M, Rokutan K, Sano T, Miyake H, Shimada M, Tashiro S. Overexpression of a novel superoxide-producing enzyme, NADPH oxidase 1, in adenoma and well differentiated adenocarcinoma of the human colon. Cancer Lett. 2005;221:97–104.

    Article  CAS  PubMed  Google Scholar 

  13. Kawahara T, Kuwano Y, Teshima-Kondo S, Takeya R, Sumimoto H, Kishi K, et al. Role of nicotinamide adenine dinucleotide phosphate oxidase 1 in oxidative burst response to Toll-like receptor 5 signaling in large intestinal epithelial cells. J Immunol. 2004;172:3051–8.

    CAS  PubMed  Google Scholar 

  14. Geiszt M, Lekstrom K, Brenner S, Hewitt SM, Dana R, Malech HL, et al. NAD(P)H oxidase 1, a product of differentiated colon epithelial cells, can partially replace glycoprotein 91phox in the regulated production of superoxide by phagocytes. J Immunol. 2003;171:299–306.

    CAS  PubMed  Google Scholar 

  15. Kuwano Y, Kawahara T, Yamamoto H, Teshima-Kondo S, Tominaga K, Masuda K, et al. Interferon-γ activates transcription of NADPH oxidase 1 gene and upregulates production of superoxide anion by human large intestinal epithelial cells. Am J Physiol Cell Physiol. 2006;290:C433–43.

    Article  CAS  PubMed  Google Scholar 

  16. Kuwano Y, Tominaga K, Kawahara T, Sasaki H, Takeo K, Nishida K, et al. Tumor necrosis factor [alpha] activates transcription of the NADPH oxidase organizer 1 (NOXO1) gene and upregulates superoxide production in colon epithelial cells. Free Radic Biol Med. 2008;45:1642–52.

    Article  CAS  PubMed  Google Scholar 

  17. McKenzie SJ, Baker MS, Buffinton GD, Doe WF. Evidence of oxidant-induced Injury to epithelial cells during inflammatory bowel disease. J Clin Invest. 1996;98:136–41.

    Article  CAS  PubMed  Google Scholar 

  18. Brown SJ, Mayer L. The immune response in inflammatory bowel disease. Am J Gastroenterol. 2007;102:2058–69.

    Article  CAS  PubMed  Google Scholar 

  19. Lambeth JD, Kawahara T, Diebold B. Regulation of Nox and Duox enzymatic activity and expression. Free Radic Biol Med. 2007;43:319–31.

    Article  CAS  PubMed  Google Scholar 

  20. Teshima S, Rokutan K, Nikawa T, Kishi K. Guinea pig gastric mucosal cells produce abundant superoxide anion through an NADPH oxidase-like system. Gastroenterology. 1998;115:1186–96.

    Article  CAS  PubMed  Google Scholar 

  21. Van der Sluis M, De Koning BA, De Bruijn AC, Velcich A, Meijerink JP, Van Goudoever JB, et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology. 2006;131:117–29.

    Article  PubMed  Google Scholar 

  22. Inagaki-Ohara K, Chinen T, Matsuzaki G, Sasaki A, Sakamoto Y, Hiromatsu K, et al. Mucosal T cells bearing TCRgammadelta play a protective role in intestinal inflammation. J Immunol. 2004;173:1390–8.

    CAS  PubMed  Google Scholar 

  23. Donnelly RP, Sheikh F, Kotenko SV, Dickensheets H. The expanded family of class II cytokines that share the IL-10 receptor-2 (IL-10R2) chain. J Leukoc Biol. 2004;76:314–21.

    Article  CAS  PubMed  Google Scholar 

  24. Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. 1993;75:263–74.

    Article  CAS  PubMed  Google Scholar 

  25. Karin M, Lawrence T, Nizet V. Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell. 2006;124:823–35.

    Article  CAS  PubMed  Google Scholar 

  26. Fukata M, Abreu MT. Role of Toll-like receptors in gastrointestinal malignancies. Oncogene. 2008;27:234–43.

    Article  CAS  PubMed  Google Scholar 

  27. Teshima S, Kutsumi H, Kawahara T, Kishi K, Rokutan K. Regulation of growth and apoptosis of cultured guinea pig gastric mucosal cells by mitogenic oxidase 1. Am J Physiol Gastrointest Liver Physiol. 2000;279:G1169–76.

    CAS  PubMed  Google Scholar 

  28. Kawahara T, Teshima S, Oka A, Sugiyama T, Kishi K, Rokutan K. Type I Helicobacter pylori lipopolysaccharide stimulates Toll-like receptor 4 and activates mitogen oxidase 1 in gastric pit cells. Infect Immun. 2001;69:4382–9.

    Article  CAS  PubMed  Google Scholar 

  29. Kawahara T, Kohjima M, Kuwano Y, Mino H, Teshima-Kondo S, Takeya R, et al. Helicobacter pylori lipopolysaccharide activates Rac1 and transcription of NADPH oxidase Nox1 and its organizer NOXO1 in guinea pig gastric mucosal cells. Am J Physiol Cell Physiol. 2005;288:C450–7.

    Article  CAS  PubMed  Google Scholar 

  30. Valente AJ, Zhou Q, Lu Z, He W, Qiang M, Ma W, et al. Regulation of NOX1 expression by GATA, HNF-1alpha, and Cdx transcription factors. Free Radic Biol Med. 2008;44:430–43.

    Article  CAS  PubMed  Google Scholar 

  31. Szanto I, Rubbia-Brandt L, Kiss P, Steger K, Banfi B, Kovari E, et al. Expression of NOX1, a superoxide-generating NADPH oxidase, in colon cancer and inflammatory bowel disease. J Pathol. 2005;207:164–76.

    Article  CAS  PubMed  Google Scholar 

  32. Fiorentino DF, Bond MW, Mosmann TR. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med. 1989;170:2081–95.

    Article  CAS  PubMed  Google Scholar 

  33. Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol. 2001;19:683–765.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kensei Nishida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamizato, M., Nishida, K., Masuda, K. et al. Interleukin 10 inhibits interferon γ- and tumor necrosis factor α-stimulated activation of NADPH oxidase 1 in human colonic epithelial cells and the mouse colon. J Gastroenterol 44, 1172–1184 (2009). https://doi.org/10.1007/s00535-009-0119-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-009-0119-6

Keywords

Navigation