Skip to main content

Advertisement

Log in

Angiotensin-(1-7) suppresses oxidative stress and improves glucose uptake via Mas receptor in adipocytes

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Although reactive oxygen species (ROS) contribute to glucose intolerance induced by the renin-angiotensin system (RAS) is well documented, the role of the newly discovered pathway of RAS, angiotensin (Ang)-(1-7)/Mas axis, in this process remains unknown. Here, we examined the effect of Ang-(1-7) on oxidative stress and glucose uptake in adipocytes. We used primary cultured epididymal adipocytes from C57 mice to study Ang-(1-7) effects on glucose uptake. We also treated fully differentiated 3T3-L1 adipocytes with exogenous Ang-(1-7) or overexpression of angiotensin-converting enzyme 2 (ACE2) to induce endogenous generation of Ang-(1-7) to clarify its effects on ROS production. Intracellular ROS was measured by flow cytometry, dihydroethidium (DHE), and nitroblue tetrazolium assay. Levels of NADPH oxidase and adiponectin mRNA were measured by real-time PCR. Ang-(1-7) improved glucose uptake both in basal and insulin-stimulated states. ROS production was slightly but significantly decreased in adipocytes treated with Ang-(1-7). Additionally, Mas receptor antagonist D-Ala7-Ang-(1-7) (A779) reversed the effect of Ang-(1-7) on glucose uptake and oxidative stress. Furthermore, treatment of adipocytes with Ang-(1-7) decreased NADPH oxidase mRNA levels. We also found that oxidative stress induced by glucose oxidase–suppressed expression of adiponectin, an insulin-sensitive protein. However, the suppression of oxidative stress by Ang-(1-7) restored adiponectin expression, while A779 agonists these changes induced by Ang-(1-7). In conclusion, Ang-(1-7) can protect against oxidative stress and improve glucose metabolism in adipocytes. These results show that Ang-(1-7) is a novel target for the improvement of glucose metabolism by preventing oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G (2000) Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The heart outcomes prevention evaluation study investigators. N Engl J Med 342:145–153

    Article  PubMed  CAS  Google Scholar 

  2. Kjeldsen SE, Dahlof B, Devereux RB, Julius S, Aurup P, Edelman J, Beevers G, de Faire U, Fyhrquist F, Ibsen H, Kristianson K, Lederballe-Pedersen O, Lindholm LH, Nieminen MS, Omvik P, Oparil S, Snapinn S, Wedel H (2002) Effects of losartan on cardiovascular morbidity and mortality in patients with isolated systolic hypertension and left ventricular hypertrophy: a losartan intervention for endpoint reduction (LIFE) substudy. JAMA 288:1491–1498

    Article  PubMed  CAS  Google Scholar 

  3. McMurray JJ, Holman RR, Haffner SM, Bethel MA, Holzhauer B, Hua TA, Belenkov Y, Boolell M, Buse JB, Buckley, BM, Chacra AR, Chiang FT, Charbonnel B, Chow CC, Davies MJ, Deedwania P, Diem P, Einhorn D, Fonseca V, Fulcher GR, Gaciong Z, Gaztambide S, Giles T, Horton E, Ilkova H, Jenssen T, Kahn SE, Krum H, Laakso M, Leiter LA, Levitt NS, Mareev V, Martinez F, Masson C, Mazzone T, Meaney E, Nesto R, Pan C, Prager R, Raptis SA, Rutten GE, Sandstroem H, Schaper F, Scheen A, Schmitz O, Sinay I, Soska V, Stender S, Tamas G, Tognoni G, Tuomilehto J, Villamil AS, Vozar J, and Califf RM (2010) Effect of valsartan on the incidence of diabetes and cardiovascular events. N Engl J Med 362:1477–1490

    Google Scholar 

  4. Cao Z, Cooper ME (2011) Efficacy of renin-angiotensin system (RAS) blockers on cardiovascular and renal outcomes in patients with type 2 diabetes. Acta Diabetol. doi:10.1007/s00592-011-0328-3

  5. Fujioka S, Matsuzawa Y, Tokunaga K, Tarui S (1987) Contribution of intra-abdominal fat accumulation to the impairment of glucose and lipid metabolism in human obesity. Metabolism 36:54–59

    Article  PubMed  CAS  Google Scholar 

  6. Strazzullo P, Galletti F (2004) Impact of the renin-angiotensin system on lipid and carbohydrate metabolism. Curr Opin Nephrol Hypertens 13:325–332

    Article  PubMed  Google Scholar 

  7. Muscogiuri G, Chavez AO, Gastaldelli A, Perego L, Tripathy D, Saad MJ, Velloso L, Folli F (2008) The crosstalk between insulin and renin-angiotensin-aldosterone signaling systems and its effect on glucose metabolism and diabetes prevention. Curr Vasc Pharmacol 6:301–312

    Article  PubMed  CAS  Google Scholar 

  8. Wei Y, Sowers JR, Nistala R, Gong H, Uptergrove GM, Clark SE, Morris EM, Szary N, Manrique C, Stump CS (2006) Angiotensin II-induced NADPH oxidase activation impairs insulin signaling in skeletal muscle cells. J Biol Chem 281:35137–35146

    Article  PubMed  CAS  Google Scholar 

  9. Giani JF, Gironacci MM, Munoz MC, Pena C, Turyn D, Dominici FP (2007) Angiotensin-(1 7) stimulates the phosphorylation of JAK2, IRS-1 and Akt in rat heart in vivo: role of the AT1 and Mas receptors. Am J Physiol Heart Circ Physiol 293:H1154–H1163

    Article  PubMed  CAS  Google Scholar 

  10. Santos SH, Fernandes LR, Mario EG, Ferreira AV, Porto LC, Alvarez-Leite JI, Botion LM, Bader M, Alenina N, Santos RA (2008) Mas deficiency in FVB/N mice produces marked changes in lipid and glycemic metabolism. Diabetes 57:340–347

    Article  PubMed  CAS  Google Scholar 

  11. Niu MJ, Yang JK, Lin SS, Ji XJ, Guo LM (2008) Loss of angiotensin-converting enzyme 2 leads to impaired glucose homeostasis in mice. Endocrine 34:56–61

    Article  PubMed  CAS  Google Scholar 

  12. Yang JK, Lin SS, Ji XJ, Guo LM (2010) Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol 47:193–199

    Article  PubMed  CAS  Google Scholar 

  13. Rodbell M (1964) Metabolism of isolated fat cells. I. Effects of hormones on glucose metabolism and lipolysis. J Biol Chem 239:375–380

    PubMed  CAS  Google Scholar 

  14. Santos SH, Braga JF, Mario EG, Porto LC, Rodrigues-Machado Mda G, Murari A, Botion LM, Alenina N, Bader M, Santos RA (2010) Improved lipid and glucose metabolism in transgenic rats with increased circulating angiotensin-(1-7). Arterioscler Thromb Vasc Biol 30:953–961

    Article  PubMed  CAS  Google Scholar 

  15. Yamamoto N, Kawasaki K, Sato T, Hirose Y, Muroyama K (2008) A nonradioisotope, enzymatic microplate assay for in vivo evaluation of 2-deoxyglucose uptake in muscle tissue. Anal Biochem 375:397–399

    Article  PubMed  CAS  Google Scholar 

  16. Yamamoto N, Sato T, Kawasaki K, Murosaki S, Yamamoto Y (2006) A nonradioisotope, enzymatic assay for 2-deoxyglucose uptake in L6 skeletal muscle cells cultured in a 96-well microplate. Anal Biochem 351:139–145

    Article  PubMed  CAS  Google Scholar 

  17. Ueyama A, Sato T, Yoshida H, Magata K, Koga N (2000) Nonradioisotope assay of glucose uptake activity in rat skeletal muscle using enzymatic measurement of 2-deoxyglucose 6-phosphate in vitro and in vivo. Biol Signals Recept 9:267–274

    Article  PubMed  CAS  Google Scholar 

  18. Iida K, Takahashi Y, Kaji H, Yoshioka S, Murata M, Iguchi G, Okimura Y, Chihara K (2003) Diverse regulation of full-length and truncated growth hormone receptor expression in 3T3-L1 adipocytes. Mol Cell Endocrinol 210:21–29

    Article  PubMed  CAS  Google Scholar 

  19. Fukuoka H, Iida K, Nishizawa H, Imanaka M, Takeno R, Iguchi G, Takahashi M, Okimura Y, Kaji H, Chihara K, Takahashi Y (2010) IGF-I stimulates reactive oxygen species (ROS) production and inhibits insulin-dependent glucose uptake via ROS in 3T3-L1 adipocytes. Growth Horm IGF Res 20:212–219

    Article  PubMed  CAS  Google Scholar 

  20. Munzel T, Afanas’ev IB, Kleschyov AL, Harrison DG (2002) Detection of superoxide in vascular tissue. Arterioscler Thromb Vasc Biol 22:1761–1768

    Article  PubMed  Google Scholar 

  21. Menghini R, Marchetti V, Cardellini M, Hribal ML, Mauriello A, Lauro D, Sbraccia P, Lauro R, Federici M (2005) Phosphorylation of GATA2 by Akt increases adipose tissue differentiation and reduces adipose tissue-related inflammation: a novel pathway linking obesity to atherosclerosis. Circulation 111:1946–1953

    Article  PubMed  CAS  Google Scholar 

  22. Maritim AC, Sanders RA, Watkins JB 3rd (2003) Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 17:24–38

    Article  PubMed  CAS  Google Scholar 

  23. Pitocco D, Zaccardi F, Di Stasio E, Romitelli F, Santini SA, Zuppi C, Ghirlanda G (2010) Oxidative stress, nitric oxide, and diabetes. Rev Diabet Stud 7:15–25

    Article  PubMed  Google Scholar 

  24. Li N, Frigerio F, Maechler P (2008) The sensitivity of pancreatic beta-cells to mitochondrial injuries triggered by lipotoxicity and oxidative stress. Biochem Soc Trans 36:930–934

    Article  PubMed  Google Scholar 

  25. Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107:1058–1070

    Article  PubMed  CAS  Google Scholar 

  26. Cerbone AM, Macarone-Palmieri N, Saldalamacchia G, Coppola A, Di Minno G, Rivellese AA (2009) Diabetes, vascular complications and antiplatelet therapy: open problems. Acta Diabetol 46:253–261

    Article  PubMed  CAS  Google Scholar 

  27. Young D, O’Neill K, Jessell T, Wigler M (1988) Characterization of the rat mas oncogene and its high-level expression in the hippocampus and cerebral cortex of rat brain. Proc Natl Acad Sci USA 85:5339–5342

    Article  PubMed  CAS  Google Scholar 

  28. Young D, Waitches G, Birchmeier C, Fasano O, Wigler M (1986) Isolation and characterization of a new cellular oncogene encoding a protein with multiple potential transmembrane domains. Cell 45:711–719

    Article  PubMed  CAS  Google Scholar 

  29. Rabin M, Birnbaum D, Young D, Birchmeier C, Wigler M, Ruddle FH (1987) Human ros1 and mas1 oncogenes located in regions of chromosome 6 associated with tumor-specific rearrangements. Oncogene Res 1:169–178

    PubMed  CAS  Google Scholar 

  30. Zohn IE, Symons M, Chrzanowska-Wodnicka M, Westwick JK, Der CJ (1998) Mas oncogene signaling and transformation require the small GTP-binding protein Rac. Mol Cell Biol 18:1225–1235

    PubMed  CAS  Google Scholar 

  31. Sarfstein R, Gorzalczany Y, Mizrahi A, Berdichevsky Y, Molshanski-Mor S, Weinbaum C, Hirshberg M, Dagher MC, Pick E (2004) Dual role of Rac in the assembly of NADPH oxidase, tethering to the membrane and activation of p67phox: a study based on mutagenesis of p67phox-Rac1 chimeras. J Biol Chem 279:16007–16016

    Article  PubMed  CAS  Google Scholar 

  32. Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, Tataranni PA (2001) Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 86:1930–1935

    Article  PubMed  CAS  Google Scholar 

  33. Wu X, Motoshima H, Mahadev K, Stalker TJ, Scalia R, Goldstein BJ (2003) Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes 52:1355–1363

    Article  PubMed  CAS  Google Scholar 

  34. Hattori Y, Akimoto K, Gross SS, Hattori S, Kasai K (2005) Angiotensin-II-induced oxidative stress elicits hypoadiponectinaemia in rats. Diabetologia 48:1066–1074

    Article  PubMed  CAS  Google Scholar 

  35. Walther T, Balschun D, Voigt JP, Fink H, Zuschratter W, Birchmeier C, Ganten D, Bader M (1998) Sustained long term potentiation and anxiety in mice lacking the Mas protooncogene. J Biol Chem 273:11867–11873

    Article  PubMed  CAS  Google Scholar 

  36. Giacchetti G, Faloia E, Mariniello B, Sardu C, Gatti C, Camilloni MA, Guerrieri M, Mantero F (2002) Overexpression of the renin-angiotensin system in human visceral adipose tissue in normal and overweight subjects. Am J Hypertens 15:381–388

    Article  PubMed  CAS  Google Scholar 

  37. Ferreira AJ, Santos RA (2005) Cardiovascular actions of angiotensin-(1-7). Braz J Med Biol Res 38:499–507

    Article  PubMed  CAS  Google Scholar 

  38. Zhou JB, Yang JK (2010) Angiotensin-converting enzyme gene polymorphism is associated with proliferative diabetic retinopathy: a meta-analysis. Acta Diabetol 47:187–193

    Article  PubMed  CAS  Google Scholar 

  39. Velloso LA, Folli F, Sun XJ, White MF, Saad MJ, Kahn CR (1996) Cross-talk between the insulin and angiotensin signaling systems. Proc Natl Acad Sci USA 93:12490–12495

    Article  PubMed  CAS  Google Scholar 

  40. Yuan L, Li X, Li J, Li HL, and Cheng SS (2010) Effects of renin-angiotensin system blockade on the islet morphology and function in rats with long-term high-fat diet. Acta Diabetol. doi:10.1007/s00592-010-0210-8

  41. Munoz MC, Giani JF, Dominici FP (2010) Angiotensin-(1-7) stimulates the phosphorylation of Akt in rat extracardiac tissues in vivo via receptor Mas. Regul Pept 161:1–7

    Article  PubMed  CAS  Google Scholar 

  42. Sampaio WO, Souza dos Santos RA, Faria-Silva R, da Mata Machado LT, Schiffrin EL, Touyz RM (2007) Angiotensin-(1–7) through receptor Mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways. Hypertension 49:185–192

    Article  PubMed  CAS  Google Scholar 

  43. Giani JF, Mayer MA, Munoz MC, Silberman EA, Hocht C, Taira CA, Gironacci MM, Turyn D, Dominici FP (2009) Chronic infusion of angiotensin-(1-7) improves insulin resistance and hypertension induced by a high-fructose diet in rats. Am J Physiol Endocrinol Metab 296:E262–E271

    Article  PubMed  CAS  Google Scholar 

  44. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114:1752–1761

    PubMed  CAS  Google Scholar 

  45. Nakanishi S, Yamane K, Kamei N, Nojima H, Okubo M, Kohno N (2005) A protective effect of adiponectin against oxidative stress in Japanese Americans: the association between adiponectin or leptin and urinary isoprostane. Metabolism 54:194–199

    Article  PubMed  CAS  Google Scholar 

  46. Yamada K, Iyer SN, Chappell MC, Ganten D, Ferrario CM (1998) Converting enzyme determines plasma clearance of angiotensin-(1-7). Hypertension 32:496–502

    Article  PubMed  CAS  Google Scholar 

  47. Newsholme P, Haber EP, Hirabara SM, Rebelato EL, Procopio J, Morgan D, Oliveira-Emilio HC, Carpinelli AR, Curi R (2007) Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. J Physiol 583:9–24

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grant No. 81070644, No. 30871187 and No. 30671001 from National Natural Science Foundation of China.

Conflict of interest

There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Kui Yang.

Additional information

C. Liu and X.-H. Lv contributed equally to this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 127 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Lv, XH., Li, HX. et al. Angiotensin-(1-7) suppresses oxidative stress and improves glucose uptake via Mas receptor in adipocytes. Acta Diabetol 49, 291–299 (2012). https://doi.org/10.1007/s00592-011-0348-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-011-0348-z

Keywords

Navigation