Skip to main content
Log in

Crowdsourcing in proteomics: public resources lead to better experiments

  • Invited Review
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

With the growing interest in the field of proteomics, the amount of publicly available proteome resources has also increased dramatically. This means that there are many useful resources available for almost all aspects of a proteomics experiment. However, it remains vital to use the right resource, for the right purpose, at the right time. This review is therefore meant to aid the reader in obtaining an overview of the available resources and their application, thus providing the necessary background to choose the appropriate resources for the experiment at hand. Many of the resources are also taking advantage of so-called crowdsourcing to maximize the potential of the resource. What this means and how this can improve future experiments will also be discussed. The text roughly follows the steps involved in a proteomics experiment, starting with the planning of the experiment, via the processing of the data and the analysis of the results, to the community-wide sharing of the produced data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbatiello SE, Mani DR, Keshishian H, Carr SA (2010) Automated detection of inaccurate and imprecise transitions in peptide quantification by multiple reaction monitoring mass spectrometry. Clin Chem 56(2):291–305. doi:10.1373/clinchem.2009.138420

    Article  PubMed  CAS  Google Scholar 

  • Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  PubMed  CAS  Google Scholar 

  • Barsnes H, Vizcaíno JA, Eidhammer I, Martens L (2009) PRIDE Converter: making proteomics data-sharing easy. Nat Biotechnol 27(7):598–599

    Article  PubMed  CAS  Google Scholar 

  • Barsnes H, Eidhammer I, Martens L (2010) Fragmentation analyzer: an open-source tool to analyze MS/MS fragmentation data. Proteomics 10(5):1087–1090

    PubMed  CAS  Google Scholar 

  • Barsnes H, Vaudel M, Colaert N, Helsens K, Sickmann A, Berven FS, Martens L (2011) Compomics-utilities: an open-source Java library for computational proteomics. BMC Bioinformatics 12:70. doi:10.1186/1471-2105-12-70

    Article  PubMed  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242. doi:gkd090

    Article  PubMed  CAS  Google Scholar 

  • Bern M, Kil YJ (2011) Comment on unbiased statistical analysis for multi-stage proteomic search strategies. J Proteome Res 10(4):2123–2127. doi:10.1021/pr101143m

    Article  PubMed  CAS  Google Scholar 

  • Binns D, Dimmer E, Huntley R, Barrell D, O’Donovan C, Apweiler R (2009) QuickGO: a web-based tool for gene ontology searching. Bioinformatics 25(22):3045–3046. doi:10.1093/bioinformatics/btp536

    Article  PubMed  CAS  Google Scholar 

  • Brusniak MY, Kwok ST, Christiansen M, Campbell D, Reiter L, Picotti P, Kusebauch U, Ramos H, Deutsch EW, Chen J, Moritz RL, Aebersold R (2011) ATAQS: a computational software tool for high throughput transition optimization and validation for selected reaction monitoring mass spectrometry. BMC Bioinformatics 12:78. doi:10.1186/1471-2105-12-78

    Article  PubMed  Google Scholar 

  • Colaert N, Degroeve S, Helsens K, Martens L (2011) Analysis of the resolution limitations of peptide identification algorithms. J Proteome Res 10(12):5555–5561. doi:10.1021/pr200913a

    Article  PubMed  CAS  Google Scholar 

  • Colinge J, Masselot A, Carbonell P, Appel RD (2006) InSilicoSpectro: an open-source proteomics library. J Proteome Res 5(3):619–624. doi:10.1021/pr0504236

    Article  PubMed  CAS  Google Scholar 

  • Côté RG, Jones P, Martens L, Kerrien S, Reisinger F, Lin Q, Leinonen R, Apweiler R, Hermjakob H (2007) The Protein Identifier Cross-Referencing (PICR) service: reconciling protein identifiers across multiple source databases. BMC Bioinformatics 8:401

    Article  PubMed  Google Scholar 

  • Cottrell JS (1994) Protein identification by peptide mass fingerprinting. Pept Res 7(3):115–124

    PubMed  CAS  Google Scholar 

  • Craig R, Cortens JP, Beavis RC (2004) Open source system for analyzing, validating, and storing protein identification data. J Proteome Res 3(6):1234–1242. doi:10.1021/pr049882h

    Article  PubMed  CAS  Google Scholar 

  • Craig R, Cortens JP, Beavis RC (2005) The use of proteotypic peptide libraries for protein identification. Rapid Commun Mass Spectrom 19(13):1844–1850. doi:10.1002/rcm.1992

    Article  PubMed  CAS  Google Scholar 

  • Creasy DM, Cottrell JS (2002) Error tolerant searching of uninterpreted tandem mass spectrometry data. Proteomics 2(10):1426–1434. doi:10.1002/1615-9861(200210)2:10<1426:AID-PROT1426>3.0.CO;2-5

    Article  PubMed  CAS  Google Scholar 

  • da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. doi:10.1038/nprot.2008.211

    Article  CAS  Google Scholar 

  • Desiere F, Deutsch EW, King NL, Nesvizhskii AI, Mallick P, Eng J, Chen S, Eddes J, Loevenich SN, Aebersold R (2006) The PeptideAtlas project. Nucleic Acids Res 34(Database issue):D655–D658. doi:10.1093/nar/gkj040

    Article  PubMed  CAS  Google Scholar 

  • Deutsch EW, Lam H, Aebersold R (2008) PeptideAtlas: a resource for target selection for emerging targeted proteomics workflows. EMBO Rep 9(5):429–434. doi:10.1038/embor.2008.56

    Article  PubMed  CAS  Google Scholar 

  • Deutsch EW, Chambers M, Neumann S, Levander F, Binz PA, Shofstahl J, Campbell DS, Mendoza L, Ovelleiro D, Helsens K, Martens L, Aebersold R, Moritz RL, Brusniak MY (2011) TraML: a standard format for exchange of selected reaction monitoring transition lists. Mol Cell Proteomics. doi:10.1074/mcp.R111.015040

    Google Scholar 

  • Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312(5771):212–217. doi:10.1126/science.1124619

    Article  PubMed  CAS  Google Scholar 

  • Editors (2007) Democratizing proteomics data. Nat Biotechnol 25(3):262

    Google Scholar 

  • Editors (2008) Thou shalt share your data. Nat Methods 5(3):209

    Article  Google Scholar 

  • Eisenacher M (2011) mzIdentML: an open community-built standard format for the results of proteomics spectrum identification algorithms. Methods Mol Biol 696:161–177. doi:10.1007/978-1-60761-987-1_10

    Article  PubMed  CAS  Google Scholar 

  • Eisenacher M, Martens L, Hardt T, Kohl M, Barsnes H, Helsens K, Häkkinen J, Levander F, Aebersold R, Vandekerckhove J, Dunn MJ, Lisacek F, Siepen JA, Hubbard SJ, Binz PA, Blüggel M, Thiele H, Cottrell J, Meyer HE, Apweiler R, Stephan C (2009) Getting a grip on proteomics data—proteomics data collection (ProDaC). Proteomics 9(15):3928–3933

    Article  PubMed  CAS  Google Scholar 

  • Eng J, McCormack AL, Yates JR III (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5(11):976–989

    Article  CAS  Google Scholar 

  • Everett LJ, Bierl C, Master SR (2010) Unbiased statistical analysis for multi-stage proteomic search strategies. J Proteome Res 9(2):700–707. doi:10.1021/pr900256v

    Article  PubMed  CAS  Google Scholar 

  • Fenyo D, Beavis RC (2003) A method for assessing the statistical significance of mass spectrometry-based protein identifications using general scoring schemes. Anal Chem 75(4):768–774

    Article  PubMed  Google Scholar 

  • Flicek P, Amode MR, Barrell D, Beal K, Brent S, Chen Y, Clapham P, Coates G, Fairley S, Fitzgerald S, Gordon L, Hendrix M, Hourlier T, Johnson N, Kahari A, Keefe D, Keenan S, Kinsella R, Kokocinski F, Kulesha E, Larsson P, Longden I, McLaren W, Overduin B, Pritchard B, Riat HS, Rios D, Ritchie GR, Ruffier M, Schuster M, Sobral D, Spudich G, Tang YA, Trevanion S, Vandrovcova J, Vilella AJ, White S, Wilder SP, Zadissa A, Zamora J, Aken BL, Birney E, Cunningham F, Dunham I, Durbin R, Fernandez-Suarez XM, Herrero J, Hubbard TJ, Parker A, Proctor G, Vogel J, Searle SM (2011) Ensembl 2011. Nucleic Acids Res 39(Database issue):D800–D806. doi:10.1093/nar/gkq1064

    Article  PubMed  CAS  Google Scholar 

  • Foster JM, Degroeve S, Gatto L, Visser M, Wang R, Griss J, Apweiler R, Martens L (2011) A posteriori quality control for the curation and reuse of public proteomics data. Proteomics 11(11):2182–2194. doi:10.1002/pmic.201000602

    Article  PubMed  CAS  Google Scholar 

  • Frank AM, Savitski MM, Nielsen ML, Zubarev RA, Pevzner PA (2007) De novo peptide sequencing and identification with precision mass spectrometry. J Proteome Res 6(1):114–123

    Article  PubMed  CAS  Google Scholar 

  • Gallien S, Duriez E, Domon B (2011) Selected reaction monitoring applied to proteomics. J Mass Spectrom 46(3):298–312. doi:10.1002/jms.1895

    Article  PubMed  CAS  Google Scholar 

  • Geer LY, Markey SP, Kowalak JA, Wagner L, Xu M, Maynard DM, Yang X, Shi W, Bryant SH (2004) Open mass spectrometry search algorithm. J Proteome Res 3(5):958–964

    Article  PubMed  CAS  Google Scholar 

  • Gevaert K, Van Damme J, Goethals M, Thomas GR, Hoorelbeke B, Demol H, Martens L, Puype M, Staes A, Vandekerckhove J (2002) Chromatographic isolation of methionine-containing peptides for gel-free proteome analysis: identification of more than 800 Escherichia coli proteins. Mol Cell Proteomics 1(11):896–903

    Article  PubMed  CAS  Google Scholar 

  • Gevaert K, Goethals M, Martens L, Van Damme J, Staes A, Thomas GR, Vandekerckhove J (2003) Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides. Nat Biotechnol 21(5):566–569. doi:10.1038/nbt810

    Article  PubMed  CAS  Google Scholar 

  • Gevaert K, Ghesquiere B, Staes A, Martens L, Van Damme J, Thomas GR, Vandekerckhove J (2004) Reversible labeling of cysteine-containing peptides allows their specific chromatographic isolation for non-gel proteome studies. Proteomics 4(4):897–908. doi:10.1002/pmic.200300641

    Article  PubMed  CAS  Google Scholar 

  • Griss J, Cote RG, Gerner C, Hermjakob H, Vizcaino JA (2011a) Published and perished? The influence of the searched protein database on the long-term storage of proteomics data. Mol Cell Proteomics 10 (9):M111 008490. doi:10.1074/mcp.M111.008490

  • Griss J, Martin M, O’Donovan C, Apweiler R, Hermjakob H, Vizcaino JA (2011b) Consequences of the discontinuation of the International Protein Index (IPI) database and its substitution by the UniProtKB complete proteome sets. Proteomics 11(22):4434–4438. doi:10.1002/pmic.201100363

    Article  PubMed  CAS  Google Scholar 

  • Guberman JM, Ai J, Arnaiz O, Baran J, Blake A, Baldock R, Chelala C, Croft D, Cros A, Cutts RJ, Di Genova A, Forbes S, Fujisawa T, Gadaleta E, Goodstein DM, Gundem G, Haggarty B, Haider S, Hall M, Harris T, Haw R, Hu S, Hubbard S, Hsu J, Iyer V, Jones P, Katayama T, Kinsella R, Kong L, Lawson D, Liang Y, Lopez-Bigas N, Luo J, Lush M, Mason J, Moreews F, Ndegwa N, Oakley D, Perez-Llamas C, Primig M, Rivkin E, Rosanoff S, Shepherd R, Simon R, Skarnes B, Smedley D, Sperling L, Spooner W, Stevenson P, Stone K, Teague J, Wang J, Whitty B, Wong DT, Wong-Erasmus M, Yao L, Youens-Clark K, Yung C, Zhang J, Kasprzyk A (2011) BioMart Central Portal: an open database network for the biological community. Database (Oxford) 2011:bar041. doi:10.1093/database/bar041

  • Haider S, Ballester B, Smedley D, Zhang J, Rice P, Kasprzyk A (2009) BioMart Central Portal–unified access to biological data. Nucleic Acids Res 37(Web Server issue):W23–W27. doi:10.1093/nar/gkp265

    Article  PubMed  CAS  Google Scholar 

  • Hamady M, Cheung TH, Tufo H, Knight R (2005) Does protein structure influence trypsin miscleavage? Using structural properties to predict the behavior of related proteins. IEEE Eng Med Biol Mag 24(3):58–66

    Article  PubMed  Google Scholar 

  • Helsens K, Mueller M, Hulstaert N, Martens L (2012) Sigpep: Calculating unique peptide signature transition sets in a complete proteome background. Proteomics (in press)

  • Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, Bateman A, Bernard T, Binns D, Bork P, Burge S, de Castro E, Coggill P, Corbett M, Das U, Daugherty L, Duquenne L, Finn RD, Fraser M, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, McMenamin C, Mi H, Mutowo-Muellenet P, Mulder N, Natale D, Orengo C, Pesseat S, Punta M, Quinn AF, Rivoire C, Sangrador-Vegas A, Selengut JD, Sigrist CJ, Scheremetjew M, Tate J, Thimmajanarthanan M, Thomas PD, Wu CH, Yeats C, Yong SY (2012) InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 40(Database issue):D306–D312. doi:10.1093/nar/gkr948

    Article  PubMed  CAS  Google Scholar 

  • Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40(Database issue):D109–D114. doi:10.1093/nar/gkr988

    Article  PubMed  CAS  Google Scholar 

  • Karp NA, Lilley KS (2009) Investigating sample pooling strategies for DIGE experiments to address biological variability. Proteomics 9(2):388–397. doi:10.1002/pmic.200800485

    Article  PubMed  CAS  Google Scholar 

  • Kasprzyk A (2011) BioMart: driving a paradigm change in biological data management. Database (Oxford) 2011:bar049. doi:10.1093/database/bar049

  • Kerrien S, Aranda B, Breuza L, Bridge A, Broackes-Carter F, Chen C, Duesbury M, Dumousseau M, Feuermann M, Hinz U, Jandrasits C, Jimenez RC, Khadake J, Mahadevan U, Masson P, Pedruzzi I, Pfeiffenberger E, Porras P, Raghunath A, Roechert B, Orchard S, Hermjakob H (2012) The IntAct molecular interaction database in 2012. Nucleic Acids Res 40(Database issue):D841–D846. doi:10.1093/nar/gkr1088

    Article  PubMed  CAS  Google Scholar 

  • Kersey PJ, Duarte J, Williams A, Karavidopoulou Y, Birney E, Apweiler R (2004) The International Protein Index: an integrated database for proteomics experiments. Proteomics 4(7):1985–1988. doi:10.1002/pmic.200300721

    Article  PubMed  CAS  Google Scholar 

  • Lam H (2011) Building and searching tandem mass spectral libraries for peptide identification. Mol Cell Proteomics 10 (12):R111 008565. doi:10.1074/mcp.R111.008565

  • Lange V, Malmstrom JA, Didion J, King NL, Johansson BP, Schafer J, Rameseder J, Wong CH, Deutsch EW, Brusniak MY, Buhlmann P, Bjorck L, Domon B, Aebersold R (2008a) Targeted quantitative analysis of Streptococcus pyogenes virulence factors by multiple reaction monitoring. Mol Cell Proteomics 7(8):1489–1500. doi:10.1074/mcp.M800032-MCP200

    Article  PubMed  CAS  Google Scholar 

  • Lange V, Picotti P, Domon B, Aebersold R (2008b) Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol 4 (222): Epub

  • Levin Y (2011) The role of statistical power analysis in quantitative proteomics. Proteomics 11(12):2565–2567. doi:10.1002/pmic.201100033

    Article  PubMed  CAS  Google Scholar 

  • Ma B, Johnson R (2012) De novo sequencing and homology searching. Mol Cell Proteomics 11(2):O111.014902. doi:10.1074/mcp.O111.014902

  • MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, Kern R, Tabb DL, Liebler DC, MacCoss MJ (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26(7):966–968. doi:10.1093/bioinformatics/btq054

    Article  PubMed  CAS  Google Scholar 

  • Mallick P, Schirle M, Chen SS, Flory MR, Lee H, Martin D, Ranish J, Raught B, Schmitt R, Werner T, Kuster B, Aebersold R (2007) Computational prediction of proteotypic peptides for quantitative proteomics. Nat Biotechnol 25(1):125–131. doi:10.1038/nbt1275

    Article  PubMed  CAS  Google Scholar 

  • Martens L (2011) Proteomics databases and repositories. Methods Mol Biol 694:213–227. doi:10.1007/978-1-60761-977-2_14

    Article  PubMed  CAS  Google Scholar 

  • Martens L, Hermjakob H (2007) Proteomics data validation: why all must provide data. Mol BioSyst 3(8):518–522. doi:10.1039/b705178f

    Article  PubMed  CAS  Google Scholar 

  • Martens L, Vandekerckhove J, Gevaert K (2005) DBToolkit: processing protein databases for peptide-centric proteomics. Bioinformatics 21(17):3584–3585

    Article  PubMed  CAS  Google Scholar 

  • Martens L, Orchard S, Apweiler R, Hermjakob H (2007) Human Proteome Organization Proteomics Standards Initiative: data standardization, a view on developments and policy. Mol Cell Proteomics 6 (9):1666–1667. 6/9/1666 [pii]

    Google Scholar 

  • Martens L, Chambers M, Sturm M, Kessner D, Levander F, Shofstahl J, Tang WH, Rompp A, Neumann S, Pizarro AD, Montecchi-Palazzi L, Tasman N, Coleman M, Reisinger F, Souda P, Hermjakob H, Binz PA, Deutsch EW (2011) mzML–a community standard for mass spectrometry data. Mol Cell Proteomics 10 (1):R110 000133. doi:10.1074/mcp.R110.000133

    Google Scholar 

  • Matthews L, Gopinath G, Gillespie M, Caudy M, Croft D, de Bono B, Garapati P, Hemish J, Hermjakob H, Jassal B, Kanapin A, Lewis S, Mahajan S, May B, Schmidt E, Vastrik I, Wu G, Birney E, Stein L, D’Eustachio P (2009) Reactome knowledgebase of human biological pathways and processes. Nucleic Acids Res 37(Database issue):D619–D622. doi:10.1093/nar/gkn863

    Article  PubMed  CAS  Google Scholar 

  • Mueller M, Vizcaino JA, Jones P, Cote R, Thorneycroft D, Apweiler R, Hermjakob H, Martens L (2008) Analysis of the experimental detection of central nervous system-related genes in human brain and cerebrospinal fluid datasets. Proteomics 8(6):1138–1148. doi:10.1002/pmic.200700761

    Article  PubMed  CAS  Google Scholar 

  • Na S, Bandeira N, Paek E (2012) Fast multi-blind modification search through tandem mass spectrometry. Mol Cell Proteomics 11 (4):M111 010199. doi:10.1074/mcp.M111.010199

  • Nesvizhskii AI, Aebersold R (2005) Interpretation of shotgun proteomic data: the protein inference problem. Mol Cell Proteomics 4(10):1419–1440

    Article  PubMed  CAS  Google Scholar 

  • Nilsson T, Mann M, Aebersold R, Yates JR 3rd, Bairoch A, Bergeron JJ (2010) Mass spectrometry in high-throughput proteomics: ready for the big time. Nat Methods 7(9):681–685. doi:10.1038/nmeth0910-681

    Article  PubMed  CAS  Google Scholar 

  • Oberg AL, Vitek O (2009) Statistical design of quantitative mass spectrometry-based proteomic experiments. J Proteome Res 8(5):2144–2156. doi:10.1021/pr8010099

    Article  PubMed  CAS  Google Scholar 

  • Orchard S, Albar JP, Deutsch EW, Eisenacher M, Vizcaino JA, Hermjakob H (2011) Enabling BioSharing - a report on the Annual Spring Workshop of the HUPO-PSI April 11–13, 2011, EMBL-Heidelberg, Germany. Proteomics 11(22):4284–4290. doi:10.1002/pmic.201190117

    Article  PubMed  CAS  Google Scholar 

  • Picotti P, Rinner O, Stallmach R, Dautel F, Farrah T, Domon B, Wenschuh H, Aebersold R (2010) High-throughput generation of selected reaction-monitoring assays for proteins and proteomes. Nat Methods 7(1):43–46. doi:10.1038/nmeth.1408

    Article  PubMed  CAS  Google Scholar 

  • Prlic A, Down TA, Hubbard TJ (2005) Adding some SPICE to DAS. Bioinformatics 21(Suppl 2):ii40–ii41. doi:10.1093/bioinformatics/bti1106

    Article  PubMed  CAS  Google Scholar 

  • Pruitt KD, Tatusova T, Maglott DR (2007) NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 35(Database issue):D61–D65. doi:10.1093/nar/gkl842

    Article  PubMed  CAS  Google Scholar 

  • Reidegeld KA, Eisenacher M, Kohl M, Chamrad D, Korting G, Bluggel M, Meyer HE, Stephan C (2008) An easy-to-use Decoy Database Builder software tool, implementing different decoy strategies for false discovery rate calculation in automated MS/MS protein identifications. Proteomics 8(6):1129–1137. doi:10.1002/pmic.200701073

    Article  PubMed  CAS  Google Scholar 

  • Reisinger F, Martens L (2009) Database on demand—an online tool for the custom generation of FASTA-formatted sequence databases. Proteomics 9(18):4421–4424. doi:10.1002/pmic.200900254

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez J, Gupta N, Smith RD, Pevzner PA (2008) Does trypsin cut before proline? J Proteome Res 7(1):300–305. doi:10.1021/pr0705035

    Article  PubMed  CAS  Google Scholar 

  • Sherman J, McKay MJ, Ashman K, Molloy MP (2009) Unique ion signature mass spectrometry, a deterministic method to assign peptide identity. Mol Cell Proteomics 8(9):2051–2062. doi:10.1074/mcp.M800512-MCP200

    Article  PubMed  CAS  Google Scholar 

  • Sherwood CA, Eastham A, Lee LW, Risler J, Vitek O, Martin DB (2009) Correlation between y-type ions observed in ion trap and triple quadrupole mass spectrometers. J Proteome Res 8(9):4243–4251

    Article  PubMed  CAS  Google Scholar 

  • Siepen JA, Keevil EJ, Knight D, Hubbard SJ (2007) Prediction of missed cleavage sites in tryptic peptides aids protein identification in proteomics. J Proteome Res 6(1):399–408. doi:10.1021/pr060507u

    Article  PubMed  CAS  Google Scholar 

  • Smedley D, Haider S, Ballester B, Holland R, London D, Thorisson G, Kasprzyk A (2009) BioMart—biological queries made easy. BMC Genomics 10:22. doi:10.1186/1471-2164-10-22

    Article  PubMed  Google Scholar 

  • Swaney DL, Wenger CD, Coon JJ (2010) Value of using multiple proteases for large-scale mass spectrometry-based proteomics. J Proteome Res 9(3):1323–1329. doi:10.1021/pr900863u

    Article  PubMed  CAS  Google Scholar 

  • Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, Jensen LJ, von Mering C (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39(Database issue):D561–D568. doi:10.1093/nar/gkq973

    Article  PubMed  CAS  Google Scholar 

  • Tabb DL, Saraf A, Yates JR 3rd (2003) GutenTag: high-throughput sequence tagging via an empirically derived fragmentation model. Anal Chem 75(23):6415–6421. doi:10.1021/ac0347462

    Article  PubMed  CAS  Google Scholar 

  • Tabb DL, Ma ZQ, Martin DB, Ham AJ, Chambers MC (2008) DirecTag: accurate sequence tags from peptide MS/MS through statistical scoring. J Proteome Res 7(9):3838–3846. doi:10.1021/pr800154p

    Article  PubMed  CAS  Google Scholar 

  • Taylor CF (2006) Minimum reporting requirements for proteomics: a MIAPE primer. Proteomics 6(Suppl 2):39–44

    Article  PubMed  Google Scholar 

  • Tharakan R, Edwards N, Graham DR (2010) Data maximization by multipass analysis of protein mass spectra. Proteomics 10(6):1160–1171. doi:10.1002/pmic.200900433

    Article  PubMed  CAS  Google Scholar 

  • The call of the human proteome (2010) Nat. Methods 7(9):661

    Google Scholar 

  • Thiede B, Lamer S, Mattow J, Siejak F, Dimmler C, Rudel T, Jungblut PR (2000) Analysis of missed cleavage sites, tryptophan oxidation and N-terminal pyroglutamylation after in-gel tryptic digestion. Rapid Commun Mass Spectrom 14(6):496–502. doi:10.1002/(SICI)1097-0231(20000331)14:6<496:AID-RCM899>3.0.CO;2-1

    Article  PubMed  CAS  Google Scholar 

  • UniProt Consortium (2010) The Universal Protein Resource (UniProt) in 2010. Nucleic Acids Res 38(Database issue):142–148

    Article  Google Scholar 

  • Van Damme P, Martens L, Van Damme J, Hugelier K, Staes A, Vandekerckhove J, Gevaert K (2005) Caspase-specific and nonspecific in vivo protein processing during Fas-induced apoptosis. Nat Methods 2(10):771–777. doi:10.1038/nmeth792

    Article  PubMed  Google Scholar 

  • Vaudel M, Burkhart JM, Sickmann A, Martens L, Zahedi RP (2011) Peptide identification quality control. Proteomics 11(10):2105–2114. doi:10.1002/pmic.201000704

    Article  PubMed  CAS  Google Scholar 

  • Villaveces JM, Jimenez RC, Garcia LJ, Salazar GA, Gel B, Mulder N, Martin M, Garcia A, Hermjakob H (2011) Dasty3, a WEB framework for DAS. Bioinformatics 27(18):2616–2617. doi:10.1093/bioinformatics/btr433

    PubMed  CAS  Google Scholar 

  • Vizcaino JA, Martens L, Hermjakob H, Julian RK, Paton NW (2007) The PSI formal document process and its implementation on the PSI website. Proteomics 7(14):2355–2357. doi:10.1002/pmic.200700064

    Article  PubMed  CAS  Google Scholar 

  • Vizcaino JA, Mueller M, Hermjakob H, Martens L (2009) Charting online OMICS resources: a navigational chart for clinical researchers. Proteomics Clin Appl 3(1):18–29. doi:10.1002/prca.200800082

    Article  PubMed  CAS  Google Scholar 

  • Vizcaíno JA, Côté R, Reisinger F, Barsnes H, Foster JM, Rameseder J, Hermjakob H, Martens L (2010) The Proteomics Identifications database: 2010 update. Nucleic Acids Res 38(Database issue):736–742

    Article  Google Scholar 

  • Wang R, Fabregat A, Rios D, Ovelleiro D, Foster JM, Cote RG, Griss J, Csordas A, Perez-Riverol Y, Reisinger F, Hermjakob H, Martens L, Vizcaino JA (2012) PRIDE Inspector: a tool to visualize and validate MS proteomics data. Nat Biotechnol 30(2):135–137. doi:10.1038/nbt.2112

    Article  PubMed  Google Scholar 

  • Woollard PM (2010) Asking complex questions of the genome without programming. Methods Mol Biol 628:39–52. doi:10.1007/978-1-60327-367-1_3

    Article  PubMed  CAS  Google Scholar 

  • Yates JR III, Eng JK, McCormack AL, Schieltz D (1995) Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal Chem 67(8):1426–1436

    Article  PubMed  CAS  Google Scholar 

  • Yen CY, Russell S, Mendoza AM, Meyer-Arendt K, Sun S, Cios KJ, Ahn NG, Resing KA (2006) Improving sensitivity in shotgun proteomics using a peptide-centric database with reduced complexity: protease cleavage and SCX elution rules from data mining of MS/MS spectra. Anal Chem 78(4):1071–1084. doi:10.1021/ac051127f

    Article  PubMed  CAS  Google Scholar 

  • Yen CY, Meyer-Arendt K, Eichelberger B, Sun S, Houel S, Old WM, Knight R, Ahn NG, Hunter LE, Resing KA (2009) A simulated MS/MS library for spectrum-to-spectrum searching in large scale identification of proteins. Mol Cell Proteomics 8(4):857–869

    Article  PubMed  CAS  Google Scholar 

  • Yen CY, Houel S, Ahn NG, Old WM (2011) Spectrum-to-spectrum searching using a proteome-wide spectral library. Mol Cell Proteomics 10 (7):M111 007666. doi:10.1074/mcp.M111.007666

  • Zhang Z (2004) Prediction of low-energy collision-induced dissociation spectra of peptides. Anal Chem 76(14):3908–3922

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z (2005) Prediction of low-energy collision-induced dissociation spectra of peptides with three or more charges. Anal Chem 77(19):6364–6373

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Li Y, Shao W, Lam H (2011) Understanding the improved sensitivity of spectral library searching over sequence database searching in proteomics data analysis. Proteomics 11(6):1075–1085. doi:10.1002/pmic.201000492

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

H.B. is supported by the Research Council of Norway, and L.M. acknowledges the support of Ghent University (Multidisciplinary Research Partnership “Bioinformatics: from nucleotides to networks”), and the PRIME-XS and ProteomeXchange projects, grant agreement numbers 262067 and 260558, both funded by the European Union 7th Framework Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lennart Martens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barsnes, H., Martens, L. Crowdsourcing in proteomics: public resources lead to better experiments. Amino Acids 44, 1129–1137 (2013). https://doi.org/10.1007/s00726-012-1455-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1455-z

Keywords

Navigation