Skip to main content
Log in

Cytotoxic iron chelators: characterization of the structure, solution chemistry and redox activity of ligands and iron complexes of the di-2-pyridyl ketone isonicotinoyl hydrazone (HPKIH) analogues

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Di-2-pyridyl ketone isonicotinoyl hydrazone (HPKIH) and a range of its analogues comprise a series of monobasic acids that are capable of binding iron (Fe) as tridentate (N,N,O) ligands. Recently, we have shown that these chelators are highly cytotoxic, but show selective activity against cancer cells. Particularly interesting was the fact that cytotoxicity of the HPKIH analogues is maintained even after complexation with Fe. To understand the potent anti-tumor activity of these compounds, we have fully characterized their chemical properties. This included examination of the solution chemistry and X-ray crystal structures of both the ligands and Fe complexes from this class and the ability of these complexes to mediate redox reactions. Potentiometric titrations demonstrated that all chelators are present predominantly in their charge-neutral form at physiological pH (7.4), allowing access across biological membranes. Keto–enol tautomerism of the ligands was identified, with the tautomers exhibiting distinctly different protonation constants. Interestingly, the chelators form low-spin (diamagnetic) divalent Fe complexes in solution. The chelators form distorted octahedral complexes with FeII, with two tridentate ligands arranged in a meridional fashion. Electrochemistry of the Fe complexes in both aqueous and non-aqueous solutions revealed that the complexes are oxidized to their ferric form at relatively high potentials, but this oxidation is coupled to a rapid reaction with water to form a hydrated (carbinolamine) derivative, leading to irreversible electrochemistry. The Fe complexes of the HPKIH analogues caused marked DNA degradation in the presence of hydrogen peroxide. This observation confirms that Fe complexes from the HPKIH series mediate Fenton chemistry and do not repel DNA. Collectively, studies on the solution chemistry and structure of these HPKIH analogues indicate that they can bind cellular Fe and enhance its redox activity, resulting in oxidative damage to vital biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DFO:

desferrioxamine

HPKIH:

di-2-pyridyl ketone isonicotinoyl hydrazone

HNIH:

2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone

HPCIH:

2-pyridinecarbaldehyde isonicotinoyl hydrazone

HPIH:

pyridoxal isonicotinoyl hydrazone

L:

linear DNA

OC:

open circular DNA

SC:

supercoiled DNA

References

  1. Lovejoy DB, Richardson DR (2003) Curr Med Chem 10:1035–1049

    CAS  PubMed  Google Scholar 

  2. Liu ZD, Hider RC (2002) Coord Chem Rev 232:151–171

    Article  CAS  Google Scholar 

  3. Faa G, Crisponi G (1999) Coord Chem Rev 184:291–310

    Article  CAS  Google Scholar 

  4. Williams RE, Zweier JL, Flaherty JJ (1991) Circulation 83:1006–1114

    CAS  PubMed  Google Scholar 

  5. Visseren FLJ, Verkerk MSA, van der Bruggen T, Marx JJM, van Asbeck BS, Diepersloot RJA (2002) Eur J Clin Invest 32:84–90

    Article  CAS  Google Scholar 

  6. Hider RC, Liu Z (1997) J Pharm Pharmacol 49:59–64

    CAS  Google Scholar 

  7. Kemp JD, Smith KM, Kanner LJ, Gomez F, Thorson JA, Naumann PW (1990) Blood 76:991–995

    CAS  PubMed  Google Scholar 

  8. Richardson DR (1998) Leukemia Lymphoma 31:47–60

    CAS  PubMed  Google Scholar 

  9. Richardson DR, Tran EH, Ponka P (1995) Blood 86:4295–4306

    CAS  PubMed  Google Scholar 

  10. Richardson DR, Milnes K (1997) Blood 89:3025–3038

    CAS  PubMed  Google Scholar 

  11. Richardson DR, Ponka P (1998) J Lab Clin Med 131:306–315

    CAS  PubMed  Google Scholar 

  12. Richardson DR (2002) Crit Rev Oncol Hematol 42:267–281

    Article  CAS  PubMed  Google Scholar 

  13. Boger DL, Cai H (1999) Angew Chem Int Ed 38:448–476

    Article  CAS  Google Scholar 

  14. Richardson DR, Bernhardt PV (1999) J Biol Inorg Chem 4:266–273

    Article  CAS  PubMed  Google Scholar 

  15. Becker EM, Lovejoy DB, Greer JM, Watts RN, Richardson DR (2003) Br J Pharmacol 138:819–830

    Article  CAS  PubMed  Google Scholar 

  16. Richardson D, Mouralian C, Ponka P, Becker E (2001) Biochim Biophys Acta 1536:133–140

    Article  CAS  PubMed  Google Scholar 

  17. Armstrong CM, Bernhardt PV, Chin P, Richardson DR (2003) Eur J Inorg Chem 1145–1146

  18. Chaston TB, Richardson DR (2003) J Biol Inorg Chem 8:427–438

    CAS  PubMed  Google Scholar 

  19. Bakir M, Brown O (2002) J Mol Struct 609:129–136

    Article  CAS  Google Scholar 

  20. Dean RT, Nicholson P (1994) Free Radical Res 20:83–101

    CAS  Google Scholar 

  21. Gutteridge JM (1990) Free Radical Res Commun 9:119–125

    CAS  Google Scholar 

  22. Hermes-Lima M, Nagy E, Ponka P, Schulman HM (1998) Free Radical Biol Med 25:875–880

    Article  CAS  Google Scholar 

  23. Gans P, Sabatani A, Vacca A (1985) J Chem Soc Dalton Trans 1195–1200

  24. Martinelli RA, Hanson GR, Thompson JS, Holmquist B, Pilbrow JR, Auld DS, Vallee BL (1989) Biochemistry 28:2251–2258

    CAS  PubMed  Google Scholar 

  25. Farrugia LJ (1999) J Appl Crystallogr 32:837

    Article  Google Scholar 

  26. Sheldrick GM (1997) SHELX97: programs for crystal structure analysis, release 97-2. University of Göttingen, Germany

  27. Farrugia LJ (1997) J Appl Crystallogr 30:565

    Article  CAS  Google Scholar 

  28. Tossidis IA (1983) Chim Chron 12:181–197

    CAS  Google Scholar 

  29. Garcia-Vargas M, Belizon M, Hernandez-Artiga MP, Martinez C, Perez-Bustamante JA (1986) Appl Spectrosc 40:1058–1062

    CAS  Google Scholar 

  30. Al-Nuri MA, Abu-Eid M, Zatar NA, Khalaf S, Hannoun M, Khamis M (1992) Anal Chim Acta 259:175–179

    CAS  Google Scholar 

  31. Nakanishi T, Otomo M (1986) Microchem J 33:172–178

    CAS  Google Scholar 

  32. Zatar NA, Al-Nuri MA, Abu-Eid M, Hannoun M, Abu-Zuhri AZ, Khalaf S, Khamis M (1991) Spectrosc Lett 24:1145–1152

    CAS  Google Scholar 

  33. Abu-Eid M, Zatar NA, Al-Nuri MA, Khamis M, Khalaf S (1992) Spectrosc Lett 25:585–592

    CAS  Google Scholar 

  34. Manuel-Vez MP, Garcia-Vargas M (1993) An Quim 89:218–222

    CAS  Google Scholar 

  35. Abu Zuhri AZ, El-Shahawi MS, Kamal MM, Al-Nuri M, Hannoun M (1994) Anal Lett 27:1907–1919

    Google Scholar 

  36. Rossi MV, Suarez-Iha MEV, Hoffmann MR (1995) Spectrosc Lett 28:1153–1166

    CAS  Google Scholar 

  37. Terra LHSA, Encarnacion M, Suarez-Iha V (1997) Spectrosc Lett 30:625–639

    CAS  Google Scholar 

  38. Da Cunha Areias MC, Avila-Terra LHS, Gaubeur I, Suarez-Iha MEV (2001) Spectrosc Lett 34:289–300

    Article  Google Scholar 

  39. Pinto JJ, Moreno C, Garcia-Vargas M (2002) Anal Bioanal Chem 373:844–848

    Article  CAS  PubMed  Google Scholar 

  40. Hearn MJ (2002) PCT Int Appl 0243668

  41. Bacchi A, Carcelli M, Costa M, Pelagatti P, Pelizzi C, Pelizzi G (1996) J Chem Soc Dalton Trans 4239–4244

  42. Ianelli S, Mazza P, Orcesi M, Pelizzi C, Pelizzi G, Zani F (1995) J Inorg Biochem 60:89–108

    Article  CAS  PubMed  Google Scholar 

  43. Ishak CF, Pflaum RT, Baenziger NC (1984) Acta Crystalloge Sect C 40:2047–2049

    Article  Google Scholar 

  44. Carcelli M, Pelizzi C, Pelizzi G, Mazza P, Zani F (1995) J Organomet Chem 488:55–61

    Article  CAS  Google Scholar 

  45. Bakir M, Green O (2002) Acta Crystallogr Sect C 58:o263–o265

    Article  Google Scholar 

  46. Richardson DR, Wis Vitolo LM, Hefter GT, May PM, Clare BW, Webb J, Wilairat P (1990) Inorg Chim Acta 170:165–170

    Article  CAS  Google Scholar 

  47. Dogan A, Köseoglu F, Kiliç E (2001) Anal Biochem 296:237–239

    Article  Google Scholar 

  48. Bernhardt PV, Chin P, Richardson DR (2001) J Biol Inorg Chem 6:801–809

    Article  CAS  PubMed  Google Scholar 

  49. West DX, Swearingen JK, Valdes-Martinez J, Hernandez-Ortega S, El-Sawaf AK, van Meurs F, Castineiras A, Garcia I, Bermejo E (1999) Polyhedron 18:2919–2929

    Article  CAS  Google Scholar 

  50. Holland JM, Mc Allister JA, Lu Z, Kilner CA, Thronton-Pett M, Halcrow MA (2001) Chem Commun 577

  51. Pilbrow JR (1990) Transition ion electron paramagnetic resonance. Oxford University Press, New York

  52. Garcia-Tojal J, Pizarro JL, Lezama L, Arriortua MI, Rojo T (1998) Inorg Chim Acta 278:150–158

    Article  CAS  Google Scholar 

  53. Rudolf M, Feldberg SW (1996) DigiSim 2.1. West Lafayette, Ind., USA

  54. Burger RM, Alder AD, Horwitz SB, Mims WB, Peisach J (1981) Biochemistry 20:1701–1704

    CAS  PubMed  Google Scholar 

  55. Muller I, Niethammer D, Bruchelt G (1998) Int J Mol Med 1:491–494

    CAS  PubMed  Google Scholar 

  56. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  57. Mello Filho AC, Meneghini R (1984) Biochim Biophys Acta 781:56–63

    PubMed  Google Scholar 

  58. Eliot H, Gianni L, Myers C (1984) Biochemistry 23:928–936

    CAS  PubMed  Google Scholar 

  59. Aruoma OI, Halliwell B, Dizdaroglu M (1989) J Biol Chem 264:13024–13028

    CAS  PubMed  Google Scholar 

  60. Lloyd DR, Phillips DH (1999) Mutat Res 424:23–36

    Article  CAS  PubMed  Google Scholar 

  61. Gutteridge JM, Quinlan GJ, Evans TW (2001) Free Radical Res 34:439–443

    CAS  Google Scholar 

  62. Dhungana S, White PS, Crumbliss AL (2001) J Biol Inorg Chem 6:810–818

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Children’s Cancer Institute Australia for Medical Research is affiliated with the University of New South Wales and Sydney Children’s Hospital. This project was supported by a fellowship and projects grant from the National Health and Medical Research Council of Australia (D.R.R.) and an Australian Research Council Large Grant (D.R.R.). T.B.C. thanks the Friedreich’s Ataxia Foundation of New South Wales and Victoria for a PhD Scholarship. P.V.B. acknowledges financial support from the University of Queensland.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paul V. Bernhardt or Des R. Richardson.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernhardt, P.V., Caldwell, L.M., Chaston, T.B. et al. Cytotoxic iron chelators: characterization of the structure, solution chemistry and redox activity of ligands and iron complexes of the di-2-pyridyl ketone isonicotinoyl hydrazone (HPKIH) analogues. J Biol Inorg Chem 8, 866–880 (2003). https://doi.org/10.1007/s00775-003-0486-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-003-0486-z

Keywords

Navigation