Skip to main content

Advertisement

Log in

Azithromycin use in patients with cystic fibrosis

  • Review
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Rational antimicrobial administration is still considered to be the most effective therapeutic approach in cystic fibrosis (CF), and long-term treatment with azithromycin (Az) is included in the current guidelines for CF patients aged ≥6 years. Az has microbiological, immunomodulatory and anti-inflammatory properties that can reduce some of the biological problems that are among the causes of the progressive lung damage associated with CF. Moreover, although it is not active against Pseudomonas aeruginosa (the most important bacterial pathogen responsible for infectious exacerbations), it can be efficiently used in the case of P. aeruginosa infections because sub-inhibitory concentrations can reduce their pathogenic role by interfering with some bacterial activities and increasing their susceptibility to antibiotics. Az also has anti-viral activity that limits the risk of the bacterial pulmonary exacerbations that frequently occur after apparently mild viral infections. The available data seem to indicate that it is effective during its first year of administration, but the impact of longer treatment is debated. Other still undefined aspects of the use of Az include the possible emergence of antibiotic resistance in the other bacterial pathogens that usually colonise CF patients, the real incidence of adverse events and the drug’s potential interference with other routine therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Davies JC, Alton EW, Bush A (2007) Cystic fibrosis. BMJ 335:1255–1259

    Article  PubMed Central  PubMed  Google Scholar 

  2. Cystic Fibrosis Foundation. What is the life expectancy for people with CF? Available online at: http://www.cff.org/AboutCF/Faqs/#CF-life-expectancy. Accessed 10 Dec 2014

  3. Kumar S, Tana A, Shankar A (2014) Cystic fibrosis—what are the prospects for a cure? Eur J Intern Med 25:803–807

    Article  PubMed  Google Scholar 

  4. Mogayzel PJ Jr, Naureckas ET, Robinson KA, Mueller G, Hadjiliadis D, Hoag JB et al (2013) Cystic fibrosis pulmonary guidelines. Chronic medications for maintenance of lung health. Am J Respir Crit Care Med 187:680–689

    Article  PubMed  Google Scholar 

  5. Cohen-Cymberknoh M, Kerem E, Ferkol T, Elizur A (2013) Airway inflammation in cystic fibrosis: molecular mechanisms and clinical implications. Thorax 68:1157–1162

    Article  PubMed  Google Scholar 

  6. Razvi S, Quittell L, Sewall A, Quinton H, Marshall B, Saiman L (2009) Respiratory microbiology of patients with cystic fibrosis in the United States, 1995 to 2005. Chest 136:1554–1560

    Article  PubMed  Google Scholar 

  7. Waters V, Yau Y, Prasad S, Lu A, Atenafu E, Crandall I et al (2011) Stenotrophomonas maltophilia in cystic fibrosis: serologic response and effect on lung disease. Am J Respir Crit Care Med 183:635–640

    Article  PubMed  Google Scholar 

  8. Zlosnik JEA, Costa PS, Brant R, Mori PY, Hird TJ, Fraenkel MC et al (2011) Mucoid and nonmucoid Burkholderia cepacia complex bacteria in cystic fibrosis infections. Am J Respir Crit Care Med 183:67–72

    Article  PubMed  Google Scholar 

  9. Foweraker J (2009) Recent advances in the microbiology of respiratory tract infection in cystic fibrosis. Br Med Bull 89:93–110

    Article  PubMed  Google Scholar 

  10. Asner S, Waters V, Solomon M, Yau Y, Richardson SE, Grasemann H et al (2012) Role of respiratory viruses in pulmonary exacerbations in children with cystic fibrosis. J Cyst Fibros 11:433–439

    Article  PubMed  Google Scholar 

  11. Esposito S, Daccò V, Daleno C, Gambazza S, Montinaro V, Bisogno A et al (2014) Human rhinovirus infection in children with cystic fibrosis. Jpn J Infect Dis 67:399–401

    Article  PubMed  Google Scholar 

  12. Fancello L, Desnues C, Raoult D, Rolain JM (2011) Bacteriophages and diffusion of genes encoding antimicrobial resistance in cystic fibrosis sputum microbiota. J Antimicrob Chemother 66:2448–2454

    Article  CAS  PubMed  Google Scholar 

  13. Delhaes L, Monchy S, Fréalle E, Hubans C, Salleron J, Leroy S et al (2012) The airway microbiota in cystic fibrosis: a complex fungal and bacterial community—implications for therapeutic management. PLoS One 7:e36313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Sagel SD, Wagner BD, Anthony MM, Emmett P, Zemanick ET (2012) Sputum biomarkers of inflammation and lung function decline in children with cystic fibrosis. Am J Respir Crit Care Med 186:857–865

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Hartl D, Latzin P, Hordijk P, Marcos V, Rudolph C, Woischnik M et al (2007) Cleavage of CXCR1 on neutrophils disables bacterial killing in cystic fibrosis lung disease. Nat Med 13:1423–1430

    Article  CAS  PubMed  Google Scholar 

  16. Gray RD, Imrie M, Boyd AC, Porteous D, Innes JA, Greening AP (2010) Sputum and serum calprotectin are useful biomarkers during CF exacerbation. J Cyst Fibros 9:193–198

    Article  CAS  PubMed  Google Scholar 

  17. Palm K, Sawicki G, Rosen R (2012) The impact of reflux burden on Pseudomonas positivity in children with cystic fibrosis. Pediatr Pulmonol 47:582–587

    Article  PubMed  Google Scholar 

  18. Kettle AJ, Chan T, Osberg I, Senthilmohan R, Chapman AL, Mocatta TJ et al (2004) Myeloperoxidase and protein oxidation in the airways of young children with cystic fibrosis. Am J Respir Crit Care Med 170:1317–1323

    Article  PubMed  Google Scholar 

  19. Starosta V, Griese M (2006) Protein oxidation by chronic pulmonary diseases in children. Pediatr Pulmonol 41:67–73

    Article  CAS  PubMed  Google Scholar 

  20. Roum JH, Buhl R, McElvaney NG, Borok Z, Crystal RG (1993) Systemic deficiency of glutathione in cystic fibrosis. J Appl Physiol (1985) 75:2419–2424

    CAS  Google Scholar 

  21. Pillarisetti N, Williamson E, Linnane B, Skoric B, Robertson CF, Robinson P et al (2011) Infection, inflammation, and lung function decline in infants with cystic fibrosis. Am J Respir Crit Care Med 184:75–81

    Article  PubMed  Google Scholar 

  22. Watt AP, Courtney J, Moore J, Ennis M, Elborn JS (2005) Neutrophil cell death, activation and bacterial infection in cystic fibrosis. Thorax 60:659–664

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Khan TZ, Wagener JS, Bost T, Martinez J, Accurso FJ, Riches DW (1995) Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med 151:1075–1082

    CAS  PubMed  Google Scholar 

  24. Sly PD, Brennan S, Gangell C, de Klerk N, Murray C, Mott L et al (2009) Lung disease at diagnosis in infants with cystic fibrosis detected by newborn screening. Am J Respir Crit Care Med 180:146–152

    Article  PubMed  Google Scholar 

  25. Brennan S, Sly PD, Gangell CL, Sturges N, Winfield K, Wikstrom M et al (2009) Alveolar macrophages and CC chemokines are increased in children with cystic fibrosis. Eur Respir J 34:655–661

    Article  CAS  PubMed  Google Scholar 

  26. Sturges NC, Wikström ME, Winfield KR, Gard SE, Brennan S, Sly PD et al (2010) Monocytes from children with clinically stable cystic fibrosis show enhanced expression of Toll-like receptor 4. Pediatr Pulmonol 45:883–889

    Article  PubMed  Google Scholar 

  27. Hubeau C, Le Naour R, Abély M, Hinnrasky J, Guenounou M, Gaillard D et al (2004) Dysregulation of IL-2 and IL-8 production in circulating T lymphocytes from young cystic fibrosis patients. Clin Exp Immunol 135:528–534

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Parnham MJ, Erakovic Haber V, Giamarellos-Bourboulis EJ, Perletti G, Verleden GM, Vos R (2014) Azithromycin: mechanisms of action and their relevance for clinical applications. Pharmacol Ther 143:225–245

    Article  CAS  PubMed  Google Scholar 

  29. Imperi F, Leoni L, Visca P (2014) Antivirulence activity of azithromycin in Pseudomonas aeruginosa. Front Microbiol 5:178

    Article  PubMed Central  PubMed  Google Scholar 

  30. Imamura Y, Higashiyama Y, Tomono K, Izumikawa K, Yanagihara K, Ohno H et al (2005) Azithromycin exhibits bactericidal effects on Pseudomonas aeruginosa through interaction with the outer membrane. Antimicrob Agents Chemother 49:1377–1380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Ciofu O, Tolker-Nielsen T, Jensen PO, Wang H, Høiby N (2014) Antimicrobial resistance, respiratory tract infections and role of biofilms in lung infections in cystic fibrosis patients. Adv Drug Deliv Rev. pii: S0169-409X(14)00282-8

  32. Lutz L, Pereira DC, Paiva RM, Zavascki AP, Barth AL (2012) Macrolides decrease the minimal inhibitory concentration of anti-pseudomonal agents against Pseudomonas aeruginosa from cystic fibrosis patients in biofilm. BMC Microbiol 12:196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Tateda K, Ishii Y, Hirakata Y, Matsumoto T, Ohno A, Yamaguchi K (1994) Profiles of outer membrane proteins and lipopolysaccharide of Pseudomonas aeruginosa grown in the presence of sub-MICs of macrolide antibiotics and their relation to enhanced serum sensitivity. J Antimicrob Chemother 34:931–942

    Article  CAS  PubMed  Google Scholar 

  34. Gillis RJ, Iglewski BH (2004) Azithromycin retards Pseudomonas aeruginosa biofilm formation. J Clin Microbiol 42:5842–5845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Sugimura M, Maseda H, Hanaki H, Nakae T (2008) Macrolide antibiotic-mediated downregulation of MexAB-OprM efflux pump expression in Pseudomonas aeruginosa. Antimicrob Agents Chemother 52:4141–4144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Schögler A, Kopf BS, Edwards MR, Johnston SL, Casaulta C, Kieninger E et al (2015) Novel antiviral properties of azithromycin in cystic fibrosis airway epithelial cells. Eur Respir J 45:428–439

    Article  PubMed  Google Scholar 

  37. Halldorsson S, Gudjonsson T, Gottfredsson M, Singh PK, Gudmundsson GH, Baldursson O (2010) Azithromycin maintains airway epithelial integrity during Pseudomonas aeruginosa infection. Am J Respir Cell Mol Biol 42:62–68

    Article  CAS  PubMed  Google Scholar 

  38. Imamura Y, Yanagihara K, Mizuta Y, Seki M, Ohno H, Higashiyama Y et al (2004) Azithromycin inhibits MUC5AC production induced by the Pseudomonas aeruginosa autoinducer N-(3-Oxododecanoyl) homoserine lactone in NCI-H292 Cells. Antimicrob Agents Chemother 48:3457–3461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Gielen V, Johnston SL, Edwards MR (2010) Azithromycin induces anti-viral responses in bronchial epithelial cells. Eur Respir J 36:646–654

    Article  CAS  PubMed  Google Scholar 

  40. Daenas C, Hatziefthimiou AA, Gourgoulianis KI, Molyvdas PA (2006) Azithromycin has a direct relaxant effect on precontracted airway smooth muscle. Eur J Pharmacol 553:280–287

    Article  CAS  PubMed  Google Scholar 

  41. Vanaudenaerde BM, Wuyts WA, Geudens N, Dupont LJ, Schoofs K, Smeets S et al (2007) Macrolides inhibit IL17-induced IL8 and 8-isoprostane release from human airway smooth muscle cells. Am J Transplant 7:76–82

    Article  CAS  PubMed  Google Scholar 

  42. Willems-Widyastuti A, Vanaudenaerde BM, Vos R, Dilisen E, Verleden SE, De Vleeschauwer SI et al (2013) Azithromycin attenuates fibroblast growth factors induced vascular endothelial growth factor via p38(MAPK) signaling in human airway smooth muscle cells. Cell Biochem Biophys 67:331–339

    Article  CAS  PubMed  Google Scholar 

  43. Bosnar M, Kelnerić Z, Munić V, Eraković V, Parnham MJ (2005) Cellular uptake and efflux of azithromycin, erythromycin, clarithromycin, telithromycin, and cethromycin. Antimicrob Agents Chemother 49:2372–2377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Culić O, Eraković V, Cepelak I, Barisić K, Brajsa K, Ferencić Z et al (2002) Azithromycin modulates neutrophil function and circulating inflammatory mediators in healthy human subjects. Eur J Pharmacol 450:277–289

    Article  PubMed  Google Scholar 

  45. Marjanović N, Bosnar M, Michielin F, Willé DR, Anić-Milić T, Culić O et al (2011) Macrolide antibiotics broadly and distinctively inhibit cytokine and chemokine production by COPD sputum cells in vitro. Pharmacol Res 63:389–397

    Article  PubMed  Google Scholar 

  46. Hodge S, Hodge G, Jersmann H, Matthews G, Ahern J, Holmes M et al (2008) Azithromycin improves macrophage phagocytic function and expression of mannose receptor in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 178:139–148

    Article  CAS  PubMed  Google Scholar 

  47. Yamauchi K, Shibata Y, Kimura T, Abe S, Inoue S, Osaka D et al (2009) Azithromycin suppresses interleukin-12p40 expression in lipopolysaccharide and interferon-gamma stimulated macrophages. Int J Biol Sci 23:667–678

    Article  Google Scholar 

  48. Polancec DS, Munic Kos V, Banjanac M, Vrancic M, Cuzic S, Belamaric D et al (2012) Azithromycin drives in vitro GM-CSF/IL-4-induced differentiation of human blood monocytes toward dendritic-like cells with regulatory properties. J Leukoc Biol 91:229–243

    Article  CAS  PubMed  Google Scholar 

  49. Montenez JP, Van Bambeke F, Piret J, Schanck A, Brasseur R, Tulkens PM et al (1996) Interaction of the macrolide azithromycin with phospholipids. II. Biophysical and computer-aided conformational studies. Eur J Pharmacol 314:215–227

    Article  CAS  PubMed  Google Scholar 

  50. Munić V, Banjanac M, Koštrun S, Nujić K, Bosnar M, Marjanović N et al (2011) Intensity of macrolide anti-inflammatory activity in J774A.1 cells positively correlates with cellular accumulation and phospholipidosis. Pharmacol Res 64:298–307

    Article  PubMed  Google Scholar 

  51. Nujić K, Banjanac M, Munić V, Polančec D, Eraković Haber V (2012) Impairment of lysosomal functions by azithromycin and chloroquine contributes to anti-inflammatory phenotype. Cell Immunol 279:78–86

    Article  PubMed  Google Scholar 

  52. Parnham MJ (2005) Immunomodulatory effects of antimicrobials in the therapy of respiratory tract infections. Curr Opin Infect Dis 18:125–131

    Article  CAS  PubMed  Google Scholar 

  53. Navarro-Xavier RA, Newson J, Silveira VL, Farrow SN, Gilroy DW, Bystrom J (2010) A new strategy for the identification of novel molecules with targeted proresolution of inflammation properties. J Immunol 184:1516–1525

    Article  CAS  PubMed  Google Scholar 

  54. Southern KW, Barker PM, Solis-Moya A, Patel L (2012) Macrolide antibiotics for cystic fibrosis. Cochrane Database Syst Rev 11:CD002203

  55. Equi A, Balfour-Lynn IM, Bush A, Rosenthal M (2002) Long term azithromycin in children with cystic fibrosis: a randomised, placebo-controlled crossover trial. Lancet 360:978–984

    Article  CAS  PubMed  Google Scholar 

  56. Clement A, Tamalet A, Leroux E, Ravilly S, Fauroux B, Jais JP (2006) Long term effects of azithromycin in patients with cystic fibrosis: a double blind, placebo controlled trial. Thorax 61:895–902

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Saiman L, Marshall BC, Mayer-Hamblett N, Burns JL, Quittner AL, Cibene DA et al (2003) Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA 290:1749–1756

    Article  CAS  PubMed  Google Scholar 

  58. Saiman L, Anstead M, Mayer-Hamblett N, Lands LC, Kloster M, Hocevar-Trnka J et al (2010) Effect of azithromycin on pulmonary function in patients with cystic fibrosis uninfected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA 303:1707–1715

    Article  CAS  PubMed  Google Scholar 

  59. Wolter J, Seeney S, Bell S, Bowler S, Masel P, McCormack J (2002) Effect of long term treatment with azithromycin on disease parameters in cystic fibrosis: a randomised trial. Thorax 57:212–216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. McCormack J, Bell S, Senini S, Walmsley K, Patel K, Wainwright C et al (2007) Daily versus weekly azithromycin in cystic fibrosis patients. Eur Respir J 30:487–495

    Article  CAS  PubMed  Google Scholar 

  61. Ratjen F, Saiman L, Mayer-Hamblett N, Lands LC, Kloster M, Thompson V et al (2012) Effect of azithromycin on systemic markers of inflammation in patients with cystic fibrosis uninfected with Pseudomonas aeruginosa. Chest 142:1259–1266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Saiman L, Mayer-Hamblett N, Anstead M, Lands LC, Kloster M, Goss CH et al (2012) Open-label, follow-on study of azithromycin in pediatric patients with CF uninfected with Pseudomonas aeruginosa. Pediatr Pulmonol 47:641–648

    Article  PubMed  Google Scholar 

  63. Wilms EB, Touw DJ, Heijerman HG, van der Ent CK (2012) Azithromycin maintenance therapy in patients with cystic fibrosis: a dose advice based on a review of pharmacokinetics, efficacy, and side effects. Pediatr Pulmonol 47:658–665

    Article  PubMed  Google Scholar 

  64. Tramper-Stranders GA, Wolfs TF, Fleer A, Kimpen JL, van der Ent CK (2007) Maintenance azithromycin treatment in pediatric patients with cystic fibrosis: long-term outcomes related to macrolide resistance and pulmonary function. Pediatr Infect Dis J 26:8–12

    Article  PubMed  Google Scholar 

  65. Willekens J, Eyns H, Malfroot A (2015) How long should we maintain long-term azithromycin treatment in cystic fibrosis patients? Pediatr Pulmonol 50:103–104

    Article  PubMed  Google Scholar 

  66. Albert RK, Schuller JL; COPD Clinical Research Network (2014) Macrolide antibiotics and the risk of cardiac arrhythmias. Am J Respir Crit Care Med 189:1173–1180

    Article  CAS  PubMed  Google Scholar 

  67. Ray WA, Murray KT, Hall K, Arbogast PG, Stein CM (2012) Azithromycin and the risk of cardiovascular death. N Engl J Med 366:1881–1890

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. U.S. Food and Drug Administration (FDA). FDA Statement regarding azithromycin (Zithromax) and the risk of cardiovascular death. Available online at: http://www.fda.gov/Drugs/DrugSafety/ucm304372.htm. Accessed 13 Dec 2014

  69. Nick JA, Moskowitz SM, Chmiel JF, Forssén AV, Kim SH, Saavedra MT et al (2014) Azithromycin may antagonize inhaled tobramycin when targeting Pseudomonas aeruginosa in cystic fibrosis. Ann Am Thorac Soc 11:342–350

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Rosenfeld M, Ratjen F, Brumback L, Daniel S, Rowbotham R, McNamara S et al (2012) Inhaled hypertonic saline in infants and children younger than 6 years with cystic fibrosis: the ISIS randomized controlled trial. JAMA 307:2269–2277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This review was supported by a grant from the Italian Ministry of Health (Bando Giovani Ricercatori 2009).

Conflict of interest

The authors declare that they have no potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Esposito.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Principi, N., Blasi, F. & Esposito, S. Azithromycin use in patients with cystic fibrosis. Eur J Clin Microbiol Infect Dis 34, 1071–1079 (2015). https://doi.org/10.1007/s10096-015-2347-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-015-2347-4

Keywords

Navigation