Skip to main content

Advertisement

Log in

Insulin resistance: an additional risk factor in the pathogenesis of cardiovascular disease in type 2 diabetes

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Sedentary life style and high calorie dietary habits are prominent leading cause of metabolic syndrome in modern world. Obesity plays a central role in occurrence of various diseases like hyperinsulinemia, hyperglycemia and hyperlipidemia, which lead to insulin resistance and metabolic derangements like cardiovascular diseases (CVDs) mediated by oxidative stress. The mortality rate due to CVDs is on the rise in developing countries. Insulin resistance (IR) leads to micro or macro angiopathy, peripheral arterial dysfunction, hampered blood flow, hypertension, as well as the cardiomyocyte and the endothelial cell dysfunctions, thus increasing risk factors for coronary artery blockage, stroke and heart failure suggesting that there is a strong association between IR and CVDs. The plausible linkages between these two pathophysiological conditions are altered levels of insulin signaling proteins such as IR-β, IRS-1, PI3K, Akt, Glut4 and PGC-1α that hamper insulin-mediated glucose uptake as well as other functions of insulin in the cardiomyocytes and the endothelial cells of the heart. Reduced AMPK, PFK-2 and elevated levels of NADP(H)-dependent oxidases produced by activated M1 macrophages of the adipose tissue and elevated levels of circulating angiotensin are also cause of CVD in diabetes mellitus condition. Insulin sensitizers, angiotensin blockers, superoxide scavengers are used as therapeutics in the amelioration of CVD. It evidently becomes important to unravel the mechanisms of the association between IR and CVDs in order to formulate novel efficient drugs to treat patients suffering from insulin resistance-mediated cardiovascular diseases. The possible associations between insulin resistance and cardiovascular diseases are reviewed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ACE:

Angiotensin-converting enzyme

ARBs:

Angiotensin receptor blockers

ADA:

American Diabetes Association

AGEs:

Advanced glycation end-products

AMPK:

AMP-activated protein kinase

AT1R:

Angiotensin II type I receptor

C/EBP:

CCAAT/enhancer binding protein

CAN:

Cardiac autonomic neuropathy

CRP:

C-reactive protein

CVD:

Cardio vascular diseases

DG:

Diacyl glycerol

DM:

Diabetes mellitus

eNOS:

Endothelial nitric oxide synthase

ERR:

Estrogen-related nuclear receptors

ET-1:

Endothelin-1

FAT/CD36:

Fatty acid translocase

FetA:

Fetuin-A

FFA:

Free fatty acid

Glut4:

Glucose transporter 4

HDL:

High-density lipoprotein

HO-1:

Heme oxygenase-1

ICAM-1:

Intracellular adhesion molecule-1

IL-6:

Interleukin-6

IR:

Insulin resistance

IR-β:

Insulin receptor β

IRS-1:

Insulin receptor substrate-1

JNK:

Janus kinase

STAT:

Signal transducer and activator of transcription

LCFA:

Long-chain fatty acid

LDL:

Low-density lipoprotein

LPL:

Lipoprotein lipase

MAPK:

Mitogen-activated protein kinase

MCP-1:

Macrophage chemo attractant protein-1

mTOR:

Mammalian target of rapamycin

NADP:

Nicotinamide adenine dinucleotide phosphate

NEFA:

Non-esterified fatty acid

NFAT:

Nuclear factor of activated T cells

NFκ-B:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NO:

Nitric oxide

NOXs:

NADPH oxidases

NRF1:

Nuclear respiratory factor 1

OXPHO:

Oxidative phosphorylation

PAI-1:

Plasminogen activator inhibitor-1

PFK2:

Phosphofructokinase 2

PGC-1α:

PPAR-γ coactivator 1α

PH:

Pleckstrin homology

PI3K:

Phosphatidylinositol 3-kinase

PKC:

Protein kinase C

PKB/Akt:

Protein kinase B

PPARs:

Peroxisome proliferator-activated receptors

PTEN:

Phosphatase and tensin homolog

PTP1B:

Protein tyrosine phosphatase 1B

ROS:

Reactive oxygen species

SHIP:

SH2-containing inositol 5′-phosphatase

SOCS:

Suppressors of cytokine signaling

SREBP:

Sterol regulatory element binding protein

TAG:

Triacyl glycerol

Tfam A:

Mitochondrial transcription factor A

TLRs:

Toll-like receptors

TNF-α:

Tumor necrosis factor-α

UCP:

Uncoupling protein

VAT:

Visceral adipose tissue

VEGF:

Vascular endothelial growth factor

VLDL:

Very low-density lipoprotein

References

  1. Ceriello A (2005) Postprandial hyperglycemia and diabetes complications is it time to treat? Diabetes 54(1):1–7

    Article  PubMed  CAS  Google Scholar 

  2. Kannel WB, Hjortland M, Castelli WP (1974) Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol 34(1):29–34

    Article  PubMed  CAS  Google Scholar 

  3. Garcia M, McNamara P, Gordon T, Kannel W (1972) Cardiovascular complications in diabetics. Adv Metab Disord 2(Suppl 2):493–499

    Google Scholar 

  4. Fowler MJ (2008) Microvascular and macrovascular complications of diabetes. Clin Diabetes 26(2):77–82

    Article  Google Scholar 

  5. Ceriello A (2003) New insights on oxidative stress and diabetic complications may lead to a “causal” antioxidant therapy. Diabetes Care 26(5):1589–1596

    Article  PubMed  CAS  Google Scholar 

  6. Farahmand F, Lou H, Singal PK (2003) Oxidative stress in cardiovascular complications of diabetes. In: Pierce GN, Nagano M, Zahradka P, Dhalla NS (eds) Atherosclerosis, hypertension and diabetes. Kluwer Academic Publications, Boston, pp 427–437

    Chapter  Google Scholar 

  7. Gyurko R, Siqueira CC, Caldon N, Gao L, Kantarci A, Van Dyke TE (2006) Chronic hyperglycemia predisposes to exaggerated inflammatory response and leukocyte dysfunction in Akita mice. J Immunol 177(10):7250–7256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Lum H, Roebuck KA (2001) Oxidant stress and endothelial cell dysfunction. Am J Physiol Cell Physiol 280(4):C719–C741

    PubMed  CAS  Google Scholar 

  9. Versari D, Daghini E, Virdis A, Ghiadoni L, Taddei S (2009) Endothelial dysfunction as a target for prevention of cardiovascular disease. Diabetes Care 32(suppl 2):S314–S321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Schram MT, Chaturvedi N, Schalkwijk C, Giorgino F, Ebeling P, Fuller JH, Stehouwer CD (2003) Vascular risk factors and markers of endothelial function as determinants of inflammatory markers in type 1 diabetes the EURODIAB Prospective complications study. Diabetes Care 26(7):2165–2173

    Article  PubMed  Google Scholar 

  11. El-Osta A, Brasacchio D, Yao D, Pocai A, Jones PL, Roeder RG, Cooper ME, Brownlee M (2008) Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med 205(10):2409–2417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Hink U, Li H, Mollnau H, Oelze M, Matheis E, Hartmann M, Skatchkov M, Thaiss F, Stahl RA, Warnholtz A (2001) Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res 88(2):e14–e22

    Article  PubMed  CAS  Google Scholar 

  13. Watts G, Playford D (1998) Dyslipoproteinaemia and hyperoxidative stress in the pathogenesis of endothelial dysfunction in non-insulin dependent diabetes mellitus: an hypothesis. Atherosclerosis 141(1):17–30

    Article  PubMed  CAS  Google Scholar 

  14. Renard CB, Kramer F, Johansson F, Lamharzi N, Tannock LR, von Herrath MG, Chait A, Bornfeldt KE (2004) Diabetes and diabetes-associated lipid abnormalities have distinct effects on initiation and progression of atherosclerotic lesions. J Clin Investig 114(5):659

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX, Eckel RH (2006) Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss an update of the 1997 American Heart Association Scientific statement on obesity and heart disease from the obesity committee of the council on nutrition, physical activity, and metabolism. Circulation 113(6):898–918

    Article  PubMed  Google Scholar 

  16. Duncan BB, Schmidt MI, Pankow JS, Ballantyne CM, Couper D, Vigo A, Hoogeveen R, Folsom AR, Heiss G (2003) Low-grade systemic inflammation and the development of type 2 diabetes the atherosclerosis risk in communities study. Diabetes 52(7):1799–1805

    Article  PubMed  CAS  Google Scholar 

  17. Turner R, Holman R, Matthews D, Bassett P, Coster R, Stratton I, Cull C, Peto R, Frighi V, Kennedy I (1993) Hypertension in diabetes study (Hds). 1. Prevalence of hypertension in newly presenting type-2 diabetic-patients and the association with risk-factors for cardiovascular and diabetic complications. J Hypertens 11(3):309–317

    Article  Google Scholar 

  18. ADA (1993) Treatment of hypertension in diabetes. Diabetes Care 16:1394–1401

    Article  Google Scholar 

  19. Goto A, Arah OA, Goto M, Terauchi Y, Noda M (2013) Severe hypoglycaemia and cardiovascular disease: systematic review and meta-analysis with bias analysis. BMJ 347:F4533

    Article  PubMed  Google Scholar 

  20. Sommerfield AJ, Wilkinson IB, Webb DJ, Frier BM (2007) Vessel wall stiffness in type 1 diabetes and the central hemodynamic effects of acute hypoglycemia. Am J Physiol Endocrinol Metab 293(5):E1274–E1279

    Article  PubMed  CAS  Google Scholar 

  21. Frier BM, Schernthaner G, Heller SR (2011) Hypoglycemia and cardiovascular risks. Diabetes Care 34(Supplement 2):S132–S137

    Article  PubMed  PubMed Central  Google Scholar 

  22. Desouza CV, Bolli GB, Fonseca V (2010) Hypoglycemia, diabetes, and cardiovascular events. Diabetes Care 33(6):1389–1394

    Article  PubMed  PubMed Central  Google Scholar 

  23. Spallone V, Ziegler D, Freeman R, Bernardi L, Frontoni S, Pop-Busui R, Stevens M, Kempler P, Hilsted J, Tesfaye S (2011) Cardiovascular autonomic neuropathy in diabetes: clinical impact, assessment, diagnosis, and management. Diabetes Metab Res Rev 27(7):639–653

    Article  PubMed  Google Scholar 

  24. Witte D, Tesfaye S, Chaturvedi N, Eaton S, Kempler P, Fuller J, Group EPCS (2005) Risk factors for cardiac autonomic neuropathy in type 1 diabetes mellitus. Diabetologia 48(1):164–171

    Article  PubMed  CAS  Google Scholar 

  25. Astrup AS, Tarnow L, Rossing P, Hansen BV, Hilsted J, Parving H-H (2006) Cardiac autonomic neuropathy predicts cardiovascular morbidity and mortality in type 1 diabetic patients with diabetic nephropathy. Diabetes Care 29(2):334–339

    Article  PubMed  Google Scholar 

  26. DeFronzo RA, Tripathy D (2009) Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32(suppl 2):S157–S163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Groop L, Bonadonna R, Del Prato S, Ratheiser K, Zyck K, DeFronzo R (1989) Effect of insulin on oxidative and non-oxidative pathways of glucose and FFA metabolism in NIDDM. Evidence for multiple sites of insulin resistance. J Clin Invest 84:205–213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Morino K, Petersen KF, Shulman GI (2006) Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes 55(Supplement 2):S9–S15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Langin D, Dicker A, Tavernier G, Hoffstedt J, Mairal A, Rydén M, Arner E, Sicard A, Jenkins CM, Viguerie N (2005) Adipocyte lipases and defect of lipolysis in human obesity. Diabetes 54(11):3190–3197

    Article  PubMed  CAS  Google Scholar 

  30. Kern PA (1997) Potential role of TNFα and lipoprotein lipase as candidate genes for obesity. J Nutr 127(9):1917S–1922S

    PubMed  CAS  Google Scholar 

  31. Bugianesi E, McCullough AJ, Marchesini G (2005) Insulin resistance: a metabolic pathway to chronic liver disease. Hepatology 42(5):987–1000

    Article  PubMed  CAS  Google Scholar 

  32. Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95

    Article  PubMed  Google Scholar 

  33. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414(6865):813–820

    Article  PubMed  CAS  Google Scholar 

  34. Greene DA, Stevens MJ, Obrosova I, Feldman EL (1999) Glucose-induced oxidative stress and programmed cell death in diabetic neuropathy. Eur J Pharmacol 375(1):217–223

    Article  PubMed  CAS  Google Scholar 

  35. Wolff SP, Dean R (1987) Glucose autoxidation and protein modification. The potential role of ‘autoxidative glycosylation’ in diabetes. Biochem J 245:243–250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Yan S, Stern D, Schmidt A (1997) What’s the RAGE? The receptor for advanced glycation end products (RAGE) and the dark side of glucose. Eur J Clin Invest 27(3):179–181

    Article  PubMed  CAS  Google Scholar 

  37. Stojiljkovic MP, Lopes HF, Zhang D, Morrow JD, Goodfriend TL, Egan BM (2002) Increasing plasma fatty acids elevates F2-isoprostanes in humans: implications for the cardiovascular risk factor cluster. J Hypertens 20(6):1215–1221

    Article  PubMed  CAS  Google Scholar 

  38. S-i Yamagishi, Edelstein D, X-l Du, Kaneda Y, Guzmán M, Brownlee M (2001) Leptin induces mitochondrial superoxide production and monocyte chemoattractant protein-1 expression in aortic endothelial cells by increasing fatty acid oxidation via protein kinase A. J Biol Chem 276(27):25096–25100

    Article  Google Scholar 

  39. Paz K, Hemi R, LeRoith D, Karasik A, Elhanany E, Kanety H, Zick Y (1997) A Molecular Basis for Insulin Resistance elevated serine/threonine phosphorylation of irs-1 and irs-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation. J Biol Chem 272(47):29911–29918

    Article  PubMed  CAS  Google Scholar 

  40. Potashnik R, Bloch-Damti A, Bashan N, Rudich A (2003) IRS1 degradation and increased serine phosphorylation cannot predict the degree of metabolic insulin resistance induced by oxidative stress. Diabetologia 46(5):639–648

    PubMed  CAS  Google Scholar 

  41. Ogihara T, Asano T, Katagiri H, Sakoda H, Anai M, Shojima N, Ono H, Fujishiro M, Kushiyama A, Fukushima Y (2004) Oxidative stress induces insulin resistance by activating the nuclear factor-κB pathway and disrupting normal subcellular distribution of phosphatidylinositol 3-kinase. Diabetologia 47(5):794–805

    Article  PubMed  CAS  Google Scholar 

  42. Khamaisi M, Potashnik R, Tirosh A, Demshchak E, Rudich A, Trischler H, Wessel K, Bashan N (1997) Lipoic acid reduces glycemia and increases muscle GLUT4 content in streptozotocin-diabetic rats. Metabolism 46(7):763–768

    Article  PubMed  CAS  Google Scholar 

  43. Pessler D, Rudich A, Bashan N (2001) Oxidative stress impairs nuclear proteins binding to the insulin responsive element in the GLUT4 promoter. Diabetologia 44(12):2156–2164

    Article  PubMed  CAS  Google Scholar 

  44. Castelló A, Rodríguez-Manzaneque JC, Camps M, Perez-Castillo A, Testar X, Palacin M, Santos A, Zorzano A (1994) Perinatal hypothyroidism impairs the normal transition of GLUT4 and GLUT1 glucose transporters from fetal to neonatal levels in heart and brown adipose tissue. Evidence for tissue-specific regulation of GLUT4 expression by thyroid hormone. J Biol Chem 269(8):5905–5912

    PubMed  Google Scholar 

  45. Randle PJ, Kerbey AL, Espinal J (1988) Mechanisms decreasing glucose oxidation in diabetes and starvation: role of lipid fuels and hormones. Diabetes Metab Rev 4(7):623–638

    Article  PubMed  CAS  Google Scholar 

  46. Shulman GI (2000) Cellular mechanisms of insulin resistance. J Clin Investig 106(2):171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Stalder M, Pometta D, Suenram A (1981) Relationship between plasma insulin levels and high density lipoprotein cholesterol levels in healthy men. Diabetologia 21(6):544–548

    PubMed  CAS  Google Scholar 

  48. Sadur UN, Yost TJ, Eckel RH (1984) Insulin responsiveness of adipose tissue lipoprotein lipase is delayed but preserved in obesity*. J Clin Endocrinol Metab 59(6):1176–1182

    Article  PubMed  CAS  Google Scholar 

  49. Golay A, Zech L, Shi M-Z, Chiou Y-A, Reaven G, Chen Y-D (1987) High density lipoprotein (HDL) metabolism in noninsulin-dependent diabetes mellitus: measurement of HDL turnover using tritiated HDL*. J Clin Endocrinol Metab 65(3):512–518

    Article  PubMed  CAS  Google Scholar 

  50. Eriksson P, Nilsson L, Karpe F, Hamsten A (1998) Very-low-density lipoprotein response element in the promoter region of the human plasminogen activator inhibitor-1 gene implicated in the impaired fibrinolysis of hypertriglyceridemia. Arterioscler Thromb Vasc Biol 18(1):20–26

    Article  PubMed  CAS  Google Scholar 

  51. Nishikawa T, Edelstein D, Du XL, S-i Yamagishi, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes H-P (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404(6779):787–790

    Article  PubMed  CAS  Google Scholar 

  52. Pyörälä K (1979) Relationship of glucose tolerance and plasma insulin to the incidence of coronary heart disease: results from two population studies in Finland. Diabetes Care 2(2):131–141

    Article  PubMed  Google Scholar 

  53. Després J-P, Lamarche B, Mauriège P, Cantin B, Dagenais GR, Moorjani S, Lupien P-J (1996) Hyperinsulinemia as an independent risk factor for ischemic heart disease. N Engl J Med 334(15):952–958

    Article  PubMed  Google Scholar 

  54. Suzuki M, Shinozaki K, Kanazawa A, Hara Y, Hattori Y, Tsushima M, Harano Y (1996) Insulin resistance as an independent risk factor for carotid wall thickening. Hypertension 28(4):593–598

    Article  PubMed  CAS  Google Scholar 

  55. Shen D-C, Shieh S-M, Fuh M-T, Wu D-A, Chen Y-D, Reaven G (1988) Resistance to insulin-stimulated-glucose uptake in patients with hypertension*. J Clin Endocrinol Metab 66(3):580–583

    Article  PubMed  CAS  Google Scholar 

  56. Reaven GM, Chang H (1991) Relationship between blood pressure, plasma insulin ana triglyceride concentration, and insulin action in spontaneous hypertensive and Wistar-Kyoto rats. Am J Hypertens 4(1 Pt 1):34–38

    PubMed  CAS  Google Scholar 

  57. Sechi LA, Melis A, Tedde R (1992) Insulin hypersecretion: a distinctive feature between essential and secondary hypertension. Metabolism 41(11):1261–1266

    Article  PubMed  CAS  Google Scholar 

  58. Reaven G (1996) Hypertension and associated metabolic abnormalities—the role of insulin resistance and the sympathoadrenal system. N Engl J Med 334:374–381

    Article  PubMed  CAS  Google Scholar 

  59. Mitchell TH, Nolan B, Henry M, Cronin C, Baker H, Greely G (1997) Microalbuminuria in patients with non-insulin-dependent diabetes mellitus relates to nocturnal systolic blood pressure. Am J Med 102(6):531–535

    Article  PubMed  CAS  Google Scholar 

  60. Laine H, Yki-Jarvinen H, Kirvela O, Tolvanen T, Raitakari M, Solin O, Haaparanta M, Knuuti J, Nuutila P (1998) Insulin resistance of glucose uptake in skeletal muscle cannot be ameliorated by enhancing endothelium-dependent blood flow in obesity. J Clin Investig 101(5):1156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Ginsberg HN (2000) Insulin resistance and cardiovascular disease. J Clin Investig 106(4):453

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Seidell JC, Pérusse L, Després J-P, Bouchard C (2001) Waist and hip circumferences have independent and opposite effects on cardiovascular disease risk factors: the Quebec Family Study. Am J Clin Nutr 74(3):315–321

    PubMed  CAS  Google Scholar 

  63. Ridker PM, Cushman M, Stampfer MJ, Tracy RP, Hennekens CH (1997) Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med 336(14):973–979

    Article  PubMed  CAS  Google Scholar 

  64. Brown NJ, Kim K-S, Chen Y-Q, Blevins LS, Nadeau JH, Meranze SG, Vaughan DE (2000) Synergistic effect of adrenal steroids and angiotensin II on plasminogen activator inhibitor-1 production 1. J Clin Endocrinol Metab 85(1):336–344

    PubMed  CAS  Google Scholar 

  65. Sowers JR, Sowers PS, Peuler JD (1994) Role of insulin resistance and hyperinsulinemia in development of hypertension and atherosclerosis. J Lab Clin Med 123(5):647–652

    PubMed  CAS  Google Scholar 

  66. Chen Y-Q, Su M, Walia RR, Hao Q, Covington JW, Vaughan DE (1998) Sp1 sites mediate activation of the plasminogen activator inhibitor-1 promoter by glucose in vascular smooth muscle cells. J Biol Chem 273(14):8225–8231

    Article  PubMed  CAS  Google Scholar 

  67. Westerbacka J, Vehkavaara S, Bergholm R, Wilkinson I, Cockcroft J, Yki-Järvinen H (1999) Marked resistance of the ability of insulin to decrease arterial stiffness characterizes human obesity. Diabetes 48(4):821–827

    Article  PubMed  CAS  Google Scholar 

  68. Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD (1996) Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Investig 97(11):2601

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Després J-P (2006) Abdominal obesity: the most prevalent cause of the metabolic syndrome and related cardiometabolic risk. Eur Heart J Suppl 8(suppl B):B4–B12

    Article  CAS  Google Scholar 

  70. Steinberger J, Daniels SR (2003) Obesity, insulin resistance, diabetes, and cardiovascular risk in children an American Heart Association scientific statement from the atherosclerosis, hypertension, and obesity in the Young Committee (Council on Cardiovascular Disease in the Young) and the Diabetes Committee (Council on Nutrition, Physical Activity, and Metabolism). Circulation 107(10):1448–1453

    Article  PubMed  Google Scholar 

  71. Van Gaal LF, Mertens IL, Christophe E (2006) Mechanisms linking obesity with cardiovascular disease. Nature 444(7121):875–880

    Article  PubMed  CAS  Google Scholar 

  72. Turer AT, Hill JA, Elmquist JK, Scherer PE (2012) Adipose tissue biology and cardiomyopathy translational implications. Circ Res 111(12):1565–1577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Ramkhelawon B, Hennessy EJ, Ménager M, Ray TD, Sheedy FJ, Hutchison S, Wanschel A, Oldebeken S, Geoffrion M, Spiro W (2014) Netrin-1 promotes adipose tissue macrophage retention and insulin resistance in obesity. Nat Med 20(4):377–384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Sell H, Habich C, Eckel J (2012) Adaptive immunity in obesity and insulin resistance. Nat Rev Endocrinol 8(12):709–716

    Article  PubMed  CAS  Google Scholar 

  75. De Marchi E, Faldassari B, Bononi A, Wieckowski M, Pinton P (2013) Oxidative stress in cardiovascular diseases and obesity: role of p66Shc and protein kinase C. Oxid Med Cell Longev 2013:564961. doi:10.1155/2013/564961

    PubMed  PubMed Central  Google Scholar 

  76. Borén J, Taskinen MR, Olofsson SO, Levin M (2013) Ectopic lipid storage and insulin resistance: a harmful relationship. J Intern Med 274(1):25–40

    Article  PubMed  CAS  Google Scholar 

  77. Yang R, Barouch LA (2007) Leptin signaling and obesity cardiovascular consequences. Circ Res 101(6):545–559

    Article  PubMed  CAS  Google Scholar 

  78. Lumeng CN, Bodzin JL, Saltiel AR (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Investig 117(1):175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Ruan H, Hacohen N, Golub TR, Van Parijs L, Lodish HF (2002) Tumor necrosis factor-α suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes nuclear factor-κB activation by TNF-α is obligatory. Diabetes 51(5):1319–1336

    Article  PubMed  CAS  Google Scholar 

  80. Permana PA, Menge C, Reaven PD (2006) Macrophage-secreted factors induce adipocyte inflammation and insulin resistance. Biochem Biophys Res Commun 341(2):507–514

    Article  PubMed  CAS  Google Scholar 

  81. Schächinger V, Britten MB, Zeiher AM (2000) Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 101(16):1899–1906

    Article  PubMed  Google Scholar 

  82. Bugiardini R, Manfrini O, Pizzi C, Fontana F, Morgagni G (2004) Endothelial function predicts future development of coronary artery disease a study of women with chest pain and normal coronary angiograms. Circulation 109(21):2518–2523

    Article  PubMed  Google Scholar 

  83. Han S, Liang C-P, DeVries-Seimon T, Ranalletta M, Welch CL, Collins-Fletcher K, Accili D, Tabas I, Tall AR (2006) Macrophage insulin receptor deficiency increases ER stress-induced apoptosis and necrotic core formation in advanced atherosclerotic lesions. Cell Metab 3(4):257–266

    Article  PubMed  CAS  Google Scholar 

  84. Kuboki K, Jiang ZY, Takahara N, Ha SW, Igarashi M, Yamauchi T, Feener EP, Herbert TP, Rhodes CJ, King GL (2000) Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo a specific vascular action of insulin. Circulation 101(6):676–681

    Article  PubMed  CAS  Google Scholar 

  85. Hamsten A, Wiman B, de Faire U, Blombäck M (1985) Increased plasma levels of a rapid inhibitor of tissue plasminogen activator in young survivors of myocardial infarction. N Engl J Med 313(25):1557–1563

    Article  PubMed  CAS  Google Scholar 

  86. Wiman B, Andersson T, Hallqvist J, Reuterwall C, Ahlbom A (2000) Plasma levels of tissue plasminogen activator/plasminogen activator inhibitor-1 complex and von Willebrand factor are significant risk markers for recurrent myocardial infarction in the Stockholm Heart Epidemiology Program (SHEEP) study. Arterioscler Thromb Vasc Biol 20(8):2019–2023

    Article  PubMed  CAS  Google Scholar 

  87. Calles-Escandon J, Mirza SA, Sobel BE, Schneider DJ (1998) Induction of hyperinsulinemia combined with hyperglycemia and hypertriglyceridemia increases plasminogen activator inhibitor 1 in blood in normal human subjects. Diabetes 47(2):290–293

    Article  PubMed  CAS  Google Scholar 

  88. Bertrand L, Horman S, Beauloye C, Vanoverschelde J-L (2008) Insulin signalling in the heart. Cardiovasc Res 79(2):238–248

    Article  PubMed  CAS  Google Scholar 

  89. Randle P, Garland P, Hales C, Newsholme E (1963) The glucose fatty-acid cycle its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 281(7285):785–789

    Article  Google Scholar 

  90. Proud C (2007) Signalling to translation: how signal transduction pathways control the protein synthetic machinery. Biochem J 403:217–234

    Article  PubMed  CAS  Google Scholar 

  91. Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7(8):589–600

    Article  PubMed  CAS  Google Scholar 

  92. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399(6736):601–605

    Article  PubMed  CAS  Google Scholar 

  93. McFarlane SI, Banerji M, Sowers JR (2001) Insulin resistance and cardiovascular disease. J Clin Endocrinol Metab 86(2):713–718

    PubMed  CAS  Google Scholar 

  94. Mehta PK, Griendling KK (2007) Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 292(1):C82–C97

    Article  PubMed  CAS  Google Scholar 

  95. Lowell BB, Shulman GI (2005) Mitochondrial dysfunction and type 2 diabetes. Science 307(5708):384–387

    Article  PubMed  CAS  Google Scholar 

  96. Kim YJ, Park T (2008) Genes are differentially expressed in the epididymal fat of rats rendered obese by a high-fat diet. Nutr Res 28(6):414–422

    Article  PubMed  CAS  Google Scholar 

  97. Dong F, Li Q, Sreejayan N, Nunn JM, Ren J (2007) Metallothionein prevents high-fat diet-induced cardiac contractile dysfunction role of peroxisome proliferator-activated receptor γ coactivator 1α and mitochondrial biogenesis. Diabetes 56(9):2201–2212

    Article  PubMed  CAS  Google Scholar 

  98. Garcia-Roves P, Huss JM, Han D-H, Hancock CR, Iglesias-Gutierrez E, Chen M, Holloszy JO (2007) Raising plasma fatty acid concentration induces increased biogenesis of mitochondria in skeletal muscle. Proc Natl Acad Sci 104(25):10709–10713

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Hancock CR, Han D-H, Chen M, Terada S, Yasuda T, Wright DC, Holloszy JO (2008) High-fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc Natl Acad Sci 105(22):7815–7820

    Article  PubMed  PubMed Central  Google Scholar 

  100. Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350(7):664–671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Huo L, Scarpulla RC (2001) Mitochondrial DNA instability and peri-implantation lethality associated with targeted disruption of nuclear respiratory factor 1 in mice. Mol Cell Biol 21(2):644–654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, Miyazaki Y, Kohane I, Costello M, Saccone R (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci 100(14):8466–8471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Mootha VK, Lindgren CM, Eriksson K-F, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstråle M, Laurila E (2003) PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34(3):267–273

    Article  PubMed  CAS  Google Scholar 

  104. Russell LK, Mansfield CM, Lehman JJ, Kovacs A, Courtois M, Saffitz JE, Medeiros DM, Valencik ML, McDonald JA, Kelly DP (2004) Cardiac-specific induction of the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1α promotes mitochondrial biogenesis and reversible cardiomyopathy in a developmental stage-dependent manner. Circ Res 94(4):525–533

    Article  PubMed  CAS  Google Scholar 

  105. Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP (2000) Peroxisome proliferator–activated receptor γ coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Investig 106(7):847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Huss JM, Kelly DP (2004) Nuclear receptor signaling and cardiac energetics. Circ Res 95(6):568–578

    Article  PubMed  CAS  Google Scholar 

  107. Kelly DP, Scarpulla RC (2004) Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 18(4):357–368

    Article  PubMed  CAS  Google Scholar 

  108. Garnier A, Fortin D, Delomenie C, Momken I, Veksler V, Ventura-Clapier R (2003) Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles. J Physiol 551(2):491–501

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Ritz P, Berrut G (2005) Mitochondrial function, energy expenditure, aging and insulin resistance. Diabetes Metab 31:5S67–65S73

    Article  PubMed  CAS  Google Scholar 

  110. Savage DB, Petersen KF, Shulman GI (2005) Mechanisms of insulin resistance in humans and possible links with inflammation. Hypertension 45(5):828–833

    Article  PubMed  CAS  Google Scholar 

  111. J-a Kim, Wei Y, Sowers JR (2008) Role of mitochondrial dysfunction in insulin resistance. Circ Res 102(4):401–414

    Article  CAS  Google Scholar 

  112. Zick Y (2005) Ser/Thr phosphorylation of IRS proteins: a molecular basis for insulin resistance. Sci STKE 2005(268):pe4. doi:10.1126/stke.2682005pe4

    Google Scholar 

  113. Mather KJ, Lteif A, Steinberg HO, Baron AD (2004) Interactions between endothelin and nitric oxide in the regulation of vascular tone in obesity and diabetes. Diabetes 53(8):2060–2066

    Article  PubMed  CAS  Google Scholar 

  114. Ting HH, Timimi FK, Boles KS, Creager SJ, Ganz P, Creager MA (1996) Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J Clin Investig 97(1):22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Chen H, Montagnani M, Funahashi T, Shimomura I, Quon MJ (2003) Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem 278(45):45021–45026

    Article  PubMed  CAS  Google Scholar 

  116. Whaley-Connell A, Govindarajan G, Habibi J, Hayden MR, Cooper SA, Wei Y, Ma L, Qazi M, Link D, Karuparthi PR (2007) Angiotensin II-mediated oxidative stress promotes myocardial tissue remodeling in the transgenic (mRen2) 27 Ren2 rat. Am J Physiol Endocrinol Metab 293(1):E355–E363

    Article  PubMed  CAS  Google Scholar 

  117. Koh KK, Quon MJ, Han SH, Chung W-J, Ahn JY, Seo Y-H, Choi IS, Shin EK (2005) Additive beneficial effects of fenofibrate combined with atorvastatin in the treatment of combined hyperlipidemia. J Am Coll Cardiol 45(10):1649–1653

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Prof. Sarita Gupta was a visiting scientist in Institute of Cardiovascular Sciences. Nathalia Bernardes and Danielle da Silva Dias were exchange students, under the Canada-Brazil Training program. Dr. Pawan Singal is the holder of the Dr. Naranjan S. Dhalla Chair in Cardiovascular Research supported by St. Boniface Hospital and Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarita Gupta.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, T.P., Rawal, K., Bagchi, A.K. et al. Insulin resistance: an additional risk factor in the pathogenesis of cardiovascular disease in type 2 diabetes. Heart Fail Rev 21, 11–23 (2016). https://doi.org/10.1007/s10741-015-9515-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-015-9515-6

Keywords

Navigation