Skip to main content

Advertisement

Log in

HER4 Intracellular Domain (4ICD) Activity in the Developing Mammary Gland and Breast Cancer

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

The HER4 receptor tyrosine kinase was the final member of the EGFR-family to be discovered. In contrast to the other three members of this receptor family which function primarily as mitogenic effectors in the breast, HER4 appears to have multiple divergent functions in the normal and malignant breast. Interestingly, the majority of HER4 activities in the breast including pregnancy induced differentiation and lactation initiation, transcriptional activation, tumor cell proliferation, growth suppression, and induction of apoptosis appear to be mediated by an independently signaling soluble HER4 intracellular domain (4ICD). The 4ICD can accumulate within the nucleus or mitochondria and subcellular localization of 4ICD in part determines the physiological response of breast cells to 4ICD action. Here I will discuss the evidence supporting the role of 4ICD as the critical effector of HER4 signaling in the breast. In addition a developmental and temporal model of 4ICD action in the normal breast and during the progression of breast cancer will be presented to explain the paradox of divergent HER4 and 4ICD activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

4ICD:

HER4 intracellular domain

TACE:

tumor necrosis factor α converting enzyme

RIP:

regulated intramembrane proteolysis

ICD:

intracellular domain

HRG:

heregulin

TF:

transcription factor

MMTV:

mouse mammary tumor virus

WAP:

whey acidic protein

SH2:

src homology 2

STAT5:

signal transducer and transactivator 5

ChIP:

chromatin immunoprecipitation

NLS:

nuclear localization signal

PgR:

progesterone receptor

SDF-1:

stromal cell-derived factor 1

ERα:

estrogen receptor alpha

ERE:

estrogen response element

pS2:

trefoil factor 1 precursor

BH3:

BCL-2 homology 3

References

  1. Carpenter G. ErbB-4: mechanism of action and biology. Exp Cell Res. 2003;284(1):66–77.

    Article  PubMed  CAS  Google Scholar 

  2. Rio C, Buxbaum JD, Peschon JJ, Corfas G. Tumor necrosis factor-alpha-converting enzyme is required for cleavage of erbB4/HER4. J Biol Chem. 2000;275(14):10379–87.

    Article  PubMed  CAS  Google Scholar 

  3. Linggi B, Cheng QC, Rao AR, Carpenter G. The ErbB-4 s80 intracellular domain is a constitutively active tyrosine kinase. Oncogene 2006;25(1):160–3.

    PubMed  CAS  Google Scholar 

  4. Zhou W, Carpenter G. Heregulin-dependent trafficking and cleavage of ErbB-4. J Biol Chem. 2000;275:34737–43.

    Article  PubMed  CAS  Google Scholar 

  5. Lee HJ, Jung KM, Huang YZ, Bennett LB, Lee JS, Mei L, et al. Presenilin-dependent g-secretase-like intramembrane cleavage of ErbB4. J Biol Chem. 2002;277(8):6318–23.

    Article  PubMed  CAS  Google Scholar 

  6. Maatta JA, Sundvall M, Junttila TT, Peri L, Laine VJ, Isola J, et al. Proteolytic cleavage and phosphorylation of a tumor-associated ErbB4 isoform promote ligand-independent survival and cancer cell growth. Mol Biol Cell. 2006;17(1):67–79.

    Article  PubMed  CAS  Google Scholar 

  7. Ni C-Y, Murphy MP, Golde TE, Carpenter G. g-Secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase. Science 2001;294:2179–81.

    Article  PubMed  CAS  Google Scholar 

  8. Vidal GA, Naresh A, Marrero L, Jones FE. Presenilin-dependent g-secretase processing regulates multiple ERBB4/HER4 activities. J Biol Chem. 2005;280:19777–83.

    Article  PubMed  CAS  Google Scholar 

  9. Williams CC, Allison JG, Vidal GA, Burow ME, Beckman BS, Marrero L, et al. The ERBB4/HER4 receptor tyrosine kinase regulates gene expression by functioning as a STAT5A nuclear chaperone. J Cell Biol. 2004;167:469–78.

    Article  PubMed  CAS  Google Scholar 

  10. Muraoka-Cook RS, Sandahl M, Husted C, Hunter D, Miraglia L, Feng SM, et al. The intracellular domain of ErbB4 induces differentiation of mammary epithelial cells. Mol Biol Cell. 2006;17(9):4118–29.

    Article  PubMed  CAS  Google Scholar 

  11. Naresh A, Long W, Vidal GA, Wimley WC, Marrero L, Sartor CI, et al. The ERBB4/HER4 intracellular domain 4ICD is a BH3-only protein promoting apoptosis of breast cancer cells. Cancer Res. 2006;66(12):6412–20.

    Article  PubMed  CAS  Google Scholar 

  12. Strunk KE, Husted C, Miraglia LC, Sandahl M, Rearick WA, Hunter DM, et al. HER4 D-box sequences regulate mitotic progression and degradation of the nuclear HER4 cleavage product s80HER4. Cancer Res. 2007;67(14):6582–90.

    Article  PubMed  CAS  Google Scholar 

  13. Adlerz L, Holback S, Multhaup G, Iverfeldt K. IGF-1-induced processing of the amyloid precursor protein family is mediated by different signaling pathways. J Biol Chem. 2007;282(14):10203–9.

    Article  PubMed  CAS  Google Scholar 

  14. Vingtdeux V, Hamdane M, Gompel M, Begard S, Drobecq H, Ghestem A, et al. Phosphorylation of amyloid precursor carboxy-terminal fragments enhances their processing by a gamma-secretase-dependent mechanism. Neurobiol Dis. 2005;20(2):625–37.

    Article  PubMed  CAS  Google Scholar 

  15. Ma L, Huang YZ, Pitcher GM, Valtschanoff JG, Ma YH, Feng LY, et al. Ligand-dependent recruitment of the ErbB4 signaling complex into neuronal lipid rafts. J Neurosci. 2003;23(8):3164–75.

    PubMed  CAS  Google Scholar 

  16. Thiel KW, Carpenter G. ErbB-4 and TNF-alpha converting enzyme localization to membrane microdomains. Biochem Biophys Res Commun. 2006;350(3):629–33.

    Article  PubMed  CAS  Google Scholar 

  17. Vetrivel KS, Cheng H, Kim SH, Chen Y, Barnes NY, Parent AT, et al. Spatial segregation of gamma-secretase and substrates in distinct membrane domains. J Biol Chem. 2005;280(27):25892–900.

    Article  PubMed  CAS  Google Scholar 

  18. Vetrivel KS, Cheng H, Lin W, Sakurai T, Li T, Nukina N, et al. Association of gamma-secretase with lipid rafts in post-Golgi and endosome membranes. J Biol Chem. 2004;279(43):44945–54.

    Article  Google Scholar 

  19. Parks AL, Curtis D. Presenilin diversifies its portfolio. Trends Genet. 2007;23(3):140–50.

    Article  PubMed  CAS  Google Scholar 

  20. Junttila TT, Sundvall M, Lundin M, Lundin J, Tanner M, Harkonen P, et al. Cleavable ErbB4 isoform in estrogen receptor-regulated growth of breast cancer cells. Cancer Res. 2005;65(4):1384–93.

    Article  PubMed  CAS  Google Scholar 

  21. Zhu Y, Sullivan LL, Nair SS, Williams CC, Pandey A, Marrero L, et al. Coregulation of estrogen receptor by estrogen-inducible ERBB4/HER4 establishes a growth promoting autocrine signal in breast cancer. Cancer Res. 2006;66:7991–8.

    Article  PubMed  CAS  Google Scholar 

  22. Lynch CC, Vargo-Gogola T, Martin MD, Fingleton B, Crawford HC, Matrisian LM. Matrix metalloproteinase 7 mediates mammary epithelial cell tumorigenesis through the ErbB4 Receptor. Cancer Res. 2007;67(14):6760–7.

    Article  PubMed  CAS  Google Scholar 

  23. Long W, Wagner K-U, Lloyd KCK, Binart N, Shillingford JM, Hennighausen L, et al. Impaired differentiation and lactational failure in ErbB4-deficient mammary glands identify ERBB4 as an obligate mediator of Stat5. Development 2003;130:5257–68.

    Article  PubMed  CAS  Google Scholar 

  24. Srinivasan R, Poulsom R, Hurst HC, Gullick WJ. Expression of the c-erbB-4/HER4 protein and mRNA in normal human fetal and adult tissues and in a survey of nine solid tumour types. J Pathol. 1998;185:236–45.

    Article  PubMed  CAS  Google Scholar 

  25. Srinivasan R, Gillett CE, Barnes DM, Gullick WJ. Nuclear expression of the c-erbB-4/HER4 growth factor receptor in invasive breast cancers. Cancer Res. 2000;60:1483–7.

    PubMed  CAS  Google Scholar 

  26. Elenius K, Corfas G, Paul S, Choi CJ, Rio C, Plowman GD, et al. A novel juxtamembrane domain isoform of HER4/ErbB4: isoform-specific tissue distribution and differential processing in response to phorbol ester. J Biol Chem. 1997;272:26761–8.

    Article  PubMed  CAS  Google Scholar 

  27. Sundvall M, Peri L, Maatta JA, Tvorogov D, Paatero I, Savisalo M, et al. Differential nuclear localization and kinase activity of alternative ErbB4 intracellular domains. Oncogene 2007;26:6905–14.

    Article  PubMed  CAS  Google Scholar 

  28. Tovey SM, Dunne B, Witton CJ, Cooke TG, Bartlett JM. HER4 in breast cancer: comparison of antibodies against intra- and extra-cellular domains of HER4. Breast Cancer Res. 2006;8(2):R19.

    Article  PubMed  Google Scholar 

  29. Schroeder JA, Lee DC. Dynamic expression and activation of ERBB receptors in the developing mouse mammary gland. Cell Growth Differ. 1998;9:451–64.

    PubMed  CAS  Google Scholar 

  30. Jones FE, Welte T, Fu X-Y, Stern DF. ErbB4 signaling in the mammary gland is required for lobuloalveolar development and Stat5 activation during lactation. J Cell Biol. 1999;147:77–87.

    Article  Google Scholar 

  31. Tidcombe H, Jackson-Fisher A, Mathers K, Stern DF, Gassmann M, Golding JP. Neural and mammary gland defects in ErbB4 knockout mice genetically rescued from embryonic lethality. Proc Natl Acad Sci U S A. 2003;100:8281–6.

    Article  PubMed  CAS  Google Scholar 

  32. Li L, Cleary S, Long W, Mandarano MA, Birchmeier C, Jones FE. The breast proto-oncogene, HRGa regulates epithelial proliferation and lobuloalveolar development in the mouse mammary gland. Oncogene 2002;21:4900–7.

    Article  PubMed  CAS  Google Scholar 

  33. Liu X, Robinson GW, Wagner K-U, Garrett L, Wynshaw-Boris A, Hennighausen L. Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev. 1997;11:179–86.

    Article  PubMed  CAS  Google Scholar 

  34. Miyoshi K, Shillingford JM, Smith GH, Grimm SL, Wagner KU, Oka T, et al. Signal transducer and activator of transcription (Stat) 5 controls the proliferation and differentiation of mammary alveolar epithelium. J Cell Biol. 2001;155(4):531–42.

    Article  PubMed  CAS  Google Scholar 

  35. Teglund S, McKay C, Schuetz E, vanDeursen JM, Stravopodis D, Wang D, et al. Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 1998;93:841–50.

    Article  PubMed  CAS  Google Scholar 

  36. Clark DE, Williams CC, Duplessis TT, Moring KL, Notwick AR, Lane WS, et al. ERBB4/HER4 potentiates STAT5A transcriptional activity by regulating novel STAT5A serine phosphorylation events. J Biol Chem. 2005;280:24175–80.

    Article  PubMed  CAS  Google Scholar 

  37. Vidal GA, Clark DE, Marrero L, Jones FE. A constitutively active ERBB4/HER4 mutant with enhanced apoptotic and transcriptional co-activation activities. Oncogene 2007;26:462–6.

    Article  PubMed  CAS  Google Scholar 

  38. Schulze WX, Deng L, Mann M. Phosphotyrosine interactome of the ErbB-receptor kinase family. Mol Syst Biol. 2005;1:2005–8.

    Article  PubMed  Google Scholar 

  39. Komuro A, Nagai M, Navin NE, Sudol M. WW domain-containing protein YAP associates with ErbB-4 and acts as a co-transcriptional activator for the carboxyl-terminal fragment of ErbB-4 that translocates to the nucleus. J Biol Chem. 2003;278(35):33334–41.

    Article  PubMed  CAS  Google Scholar 

  40. Bacus SS, Chin D, Yarden Y, Zelnick CR, Stern DF. Type 1 receptor tyrosine kinases are differentially phosphorylated in mammary carcinoma and differentially associated with steroid receptors. Am J Pathol. 1996;148:549–58.

    PubMed  CAS  Google Scholar 

  41. Knowlden JM, Gee JMW, Seery LT, Farrow L, Gullick WJ, Ellis IO, et al. c-erbB3 and c-erbB4 expression is a feature of the endocrine responsive phenotype in clinical breast cancer. Oncogene 1998;17:1949–57.

    Article  PubMed  CAS  Google Scholar 

  42. Pawlowski V, Revillion F, Hebbar M, Hornez L, Peyrat JP. Prognostic value of the type I growth factor receptors in a large series of human primary breast cancers quantified with a real-time reverse transcription-polymerase chain reaction assay. Clin Cancer Res. 2000;6(11):4217–25.

    PubMed  CAS  Google Scholar 

  43. Suo Z, Berner HS, Risberg B, Karlsson MG, Nesland JM. Estrogen receptor-alpha and C-ERBB-4 expression in breast carcinomas. Virchows Arch. 2001;439(1):62–9.

    Article  PubMed  CAS  Google Scholar 

  44. Tozlu S, Girault I, Vacher S, Vendrell J, Andrieu C, Spyratos F, et al. Identification of novel genes that co-cluster with estrogen receptor alpha in breast tumor biopsy specimens, using a large-scale real-time reverse transcription-PCR approach. Endocr Relat Cancer. 2006;13(4):1109–20.

    Article  PubMed  CAS  Google Scholar 

  45. Tang CK, Concepcion X-ZW, Milan M, Gong X, Montgomery E, Lippman ME. Ribozyme-mediated down-regulation of ErbB-4 in estrogen receptor-positive breast cancer cells inhibits proliferation both in vitro and in vivo. Cancer Res. 1999;59:5315–22.

    PubMed  CAS  Google Scholar 

  46. Tang CK, Goldstein DJ, Payne J, Czubayko F, Alimandi M, Wang L-M, et al. ErbB-4 ribozymes abolish neuregulin-induced mitogenesis. Cancer Res. 1998;58:3415–22.

    PubMed  CAS  Google Scholar 

  47. Mallepell S, Krust A, Chambon P, Brisken C. Paracrine signaling through the epithelial estrogen receptor alpha is required for proliferation and morphogenesis in the mammary gland. Proc Natl Acad Sci U S A. 2006;103(7):2196–201.

    Article  PubMed  CAS  Google Scholar 

  48. Osborne CK, Schiff R. Estrogen-receptor biology: continuing progress and therapeutic implications. J Clin Oncol. 2005;23(8):1616–22.

    Article  PubMed  CAS  Google Scholar 

  49. DeNardo DG, Kim HT, Hilsenbeck S, Cuba V, Tsimelzon A, Brown PH. Global gene expression analysis of estrogen receptor transcription factor cross talk in breast cancer: identification of estrogen-induced/activator protein-1-dependent genes. Mol Endocrinol. 2005;19(2):362–78.

    Article  PubMed  CAS  Google Scholar 

  50. Kushner PJ, Agard DA, Greene GL, Scanlan TS, Shiau AK, Uht RM, et al. Estrogen receptor pathways to AP-1. J Steroid Biochem Mol Biol. 2000;74(5):311–7.

    Article  PubMed  CAS  Google Scholar 

  51. Levy N, Tatomer D, Herber CB, Zhao X, Tang H, Sargeant T, et al. Differential regulation of native estrogen receptor regulatory elements by estradiol, tamoxifen, and raloxifene. Mol Endocrinol. 2007;22(2):287–303.

    Google Scholar 

  52. Liu Y, Ludes-Meyers J, Zhang Y, Munoz-Medellin D, Kim HT, Lu C, et al. Inhibition of AP-1 transcription factor causes blockade of multiple signal transduction pathways and inhibits breast cancer growth. Oncogene 2002;21(50):7680–9.

    Article  PubMed  CAS  Google Scholar 

  53. DeNardo DG, Cuba VL, Kim H, Wu K, Lee AV, Brown PH. Estrogen receptor DNA binding is not required for estrogen-induced breast cell growth. Mol Cell Endocrinol. 2007;277(1–2):13–25.

    Article  PubMed  CAS  Google Scholar 

  54. Omerovic J, Puggioni EM, Napoletano S, Visco V, Fraioli R, Frati L, et al. Ligand-regulated association of ErbB-4 to the transcriptional co-activator YAP65 controls transcription at the nuclear level. Exp Cell Res. 2004;294(2):469–79.

    Article  PubMed  CAS  Google Scholar 

  55. Linggi B, Carpenter G. ERBB-4 s80 intracellular domain abrogates ETO2-dependent transcriptional repression. J Biol Chem. 2006;281:25373–80.

    Article  PubMed  CAS  Google Scholar 

  56. Sardi SP, Murtie J, Koirala S, Patten BA, Corfas G. Presenilin-dependent ErbB4 nuclear signaling regulates the timing of astrogenesis in the developing brain. Cell 2006;127(1):185–97.

    Article  PubMed  CAS  Google Scholar 

  57. Arasada RR, Carpenter G. Secretase-dependent tyrosine phosphorylation of Mdm2 by the ErbB-4 intracellular domain fragment. J Biol Chem. 2005;280(35):30783–7.

    Article  PubMed  CAS  Google Scholar 

  58. Kew TY, Bell JA, Pinder SE, Denley H, Srinivasan R, Gullick WJ, et al. c-erbB-4 protein expression in human breast cancer. Br J Cancer. 2000;82:1163–70.

    Article  PubMed  CAS  Google Scholar 

  59. Adams JM. Ways of dying: multiple pathways to apoptosis. Genes Dev. 2003;17:2481–95.

    Article  PubMed  CAS  Google Scholar 

  60. Yu WH, Woessner JF Jr, McNeish JD, Stamenkovic I. CD44 anchors the assembly of matrilysin/MMP-7 with heparin-binding epidermal growth factor precursor and ErbB4 and regulates female reproductive organ remodeling. Genes Dev. 2002;16(3):307–23.

    Article  PubMed  CAS  Google Scholar 

  61. Suo Z, Risberg B, Kalsson MG, Willman K, Tierens A, Skovlund E, et al. EGFR family expression in breast carcinomas. c-erbB-2 and c-erbB-4 receptors have different effects on survival. J Pathol. 2002;196(1):17–25.

    Article  PubMed  CAS  Google Scholar 

  62. Jatoi I, Chen BE, Anderson WF, Rosenberg PS. Breast cancer mortality trends in the United States according to estrogen receptor status and age at diagnosis. J Clin Oncol. 2007.

  63. Witton CJ, Reeves JR, Going JJ, Cooke TG, Bartlett JM. Expression of the HER1–4 family of receptor tyrosine kinases in breast cancer. J Pathol. 2003;200(3):290–7.

    Article  PubMed  CAS  Google Scholar 

  64. Guler G, Iliopoulos D, Guler N, Himmetoglu C, Hayran M, Huebner K. Wwox and Ap2{gamma} expression levels predict tamoxifen response. Clin Cancer Res. 2007;13(20):6115–21.

    Article  PubMed  CAS  Google Scholar 

  65. Rokavec M, Justenhoven C, Schroth W, Istrate MA, Haas S, Fischer HP, et al. A novel polymorphism in the promoter region of ERBB4 is associated with breast and colorectal cancer risk. Clin Cancer Res. 2007;13(24):7506–14.

    Article  PubMed  CAS  Google Scholar 

  66. Elenius K, Choi CJ, Paul S, Santiestevan E, Nishi E, Klagsbrun M. Characterization of a naturally occurring ErbB4 isoform that does not bind or activate phosphatidyl inositol 3-kinase. Oncogene 1999;18:2607–15.

    Article  PubMed  CAS  Google Scholar 

  67. Garcia RAG, Vasudevan K, Buonanno A. The neuregulin receptor ErbB-4 interacts with PDZ-containing proteins at neuronal synapses. Proc Natl Acad Sci USA. 2000;97:3596–601.

    Article  PubMed  CAS  Google Scholar 

  68. Aqeilan RI, Donati V, Palamarchuk A, Trapasso F, Kaou M, Pekarsky Y, et al. WW domain-containing proteins, WWOX and YAP, compete for interaction with ErbB-4 and modulate its transcriptional function. Cancer Res. 2005;65(15):6764–72.

    Article  PubMed  CAS  Google Scholar 

  69. Sundvall M, Iljin K, Kilpinen S, Sara H, Kallioniemi O-P, Elenius K. Role of ErbB4 in breast cancer. J Mammary Gland Biol Neoplasia 2008. DOI 10.1007/s10911-008-9079-3.

Download references

Acknowledgements

I am grateful to the Jones lab members past and present for their hard work, dedication, and intellectual input during the evolution of this work in progress. Support for these studies has been provided by NCI/NIH grants CA95783 and CA96717, US AMRMC grants DAMD170610418, DAMD170310418, and DAMD170310395, and the Tulane Cancer Center. Our work is dedicated to the courageous daughters, sisters, wives, and mothers battling breast cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank E. Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, F.E. HER4 Intracellular Domain (4ICD) Activity in the Developing Mammary Gland and Breast Cancer. J Mammary Gland Biol Neoplasia 13, 247–258 (2008). https://doi.org/10.1007/s10911-008-9076-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-008-9076-6

Keywords

Navigation