Skip to main content

Advertisement

Log in

Prediction of pharmacokinetic profile of valsartan in human based on in vitro uptake transport data

  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate a strategy based on a physiologically based pharmacokinetic (PBPK) model for the prediction of PK profiles in human using in vitro data when elimination of compounds relies on active transport processes. The strategy was first applied to rat in vivo and in vitro data in order to refine the PBPK model. The model could then be applied to human in vitro uptake transport data using valsartan as a probe substrate. Plated rat and human hepatocytes, and cell lines overexpressing human OATP1B1 and OATP1B3 were used for in vitro uptake experiments. The uptake rate of valsartan was higher for rat hepatocytes (K m,u = 28.4 ± 3.7 μM, V max = 1318 ± 176 pmol/mg/min and P dif = 1.21 ± 0.42 μl/mg/min) compared to human hepatocytes (K m,u = 44.4 ± 14.6 μM, V max = 304 ± 85 pmol/mg/min and P dif = 0.724 ± 0.271 μl/mg/min). OATP1B1 and 1B3 parameters were correlated to human hepatocyte data using experimentally established relative activity factors (RAF). Resulting PBPK simulations using those in vitro data were compared for plasma (human and rat) and bile (rat) concentration–time profiles following i.v. bolus administration of valsartan. An uncertainty analysis indicated that the scaled in vitro uptake clearance had to be adjusted with an additional empirical scaling factor of 5 to match the plasma concentrations and biliary excretion profiles. Applying this model, plasma clearances (CLP) for rat and human were predicted within two-fold relative to predictions based on respective in vitro data. The corrected hepatic uptake transport kinetic parameters enabled the prediction of valsartan in vivo PK profiles and plasma clearances, using PBPK modeling. Moreover, the interspecies difference in elimination rate observed in vivo was correctly reflected in the transport parameters determined in vitro. More data are needed to support more general applications of the proposed approach including its use for metabolized compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CLP (ml/min/kg):

Plasma clearance

CLHP (ml/min/kg):

Plasma hepatic clearance \( {\text{CL}}_{\text{HP}} = {\text{CL}}_{\text{P}} \times f_{\text{bile}} \)

CLRP (ml/min/kg):

Plasma renal clearance \( {\text{CL}}_{\text{RP}} = {\text{CL}}_{\text{P}} \times fe \)

EHR:

Enterohepatic recirculation

f bile :

Fraction of the dose excreted unchanged in bile

fe :

Fraction of the dose excreted unchanged in urine

fu p :

Fraction unbound in plasma

HPGL:

Hepatocytes per gram of liver

K m,u (μM):

Michaelis–Menten affinity constant unbound (I influx, E efflux)

MTPMH:

mg of total protein per million hepatocytes

mw (g/mol):

Molecular weight

OATP:

Organic anion transporting peptide

PBPK:

Physiologically based pharmacokinetic

P dif (μl/min/mg):

Passive diffusion at the basolateral membrane determined in vitro (through CHO cells membrane \( \_{\text{CHO}} \) or human hepatocytes membrane \( \_{\text{HH}} \))

RAF:

Relative activity factor

R bp :

Blood-plasma ratio

V max (pmol/min/mg):

Michaelis–Menten maximum velocity (I influx, E efflux)

C int (μM):

Compound concentration in intracellular space in vitro

C ex (μM):

Compound concentration in the medium in vitro

f b :

Fraction non-specifically bound in the in vitro system

V int (μl):

Intracellular volume of all cells in one well

V ex (μl):

Volume of the incubation medium in vitro

Cbi (μg/ml):

Blood concentration in (arterial) of tissue

Cbo (μg/ml):

Blood concentration out (venous) of tissue

C e (μg/ml):

Drug concentration in extracellular space (u = unbound) in vivo

C t (μg/ml):

Drug concentration in intracellular space (u = unbound) in vivo

fu inc :

Fraction unbound in the in vitro incubation

fu L :

Fraction unbound in liver

h :

Hematocrit

J max (mg/s):

Michaelis–Menten maximum velocity scaled to in vivo (I influx, E efflux)

Kp :

Partition coefficient

Kp e :

Partition coefficient in extracellular space (L: in liver = in Disse space)

M bile (μg):

Amount of drug cleared by biliary excretion

PSTC (ml/s):

Permeability-surface area product at the basolateral membrane

PSTCAp (ml/s):

Permeability-surface area product at the apical membrane

Q L (ml/min/kg):

Liver blood flow

V e (ml):

Extracellular volume fraction of tissue

V P (ml):

Plasma volume

References

  1. Parrott N, Jones H, Paquereau N, Lave T (2005) Application of full physiological models for pharmaceutical drug candidate selection and extrapolation of pharmacokinetics to man. Basic Clin Pharmacol Toxicol 96:193–199

    Article  CAS  PubMed  Google Scholar 

  2. Rostami-Hodjegan A, Tucker GT (2007) Simulation and prediction of in vivo drug metabolism in human populations from in vitro data. Nat Rev Drug Discov 6:140–148

    Article  CAS  PubMed  Google Scholar 

  3. Jones HM, Parrott N, Jorga K, Lave T (2006) A novel strategy for physiologically based predictions of human pharmacokinetics. Clin Pharmacokinet 45:511–542

    Article  CAS  PubMed  Google Scholar 

  4. Soars MG, Grime K, Sproston JL, Webborn PJ, Riley RJ (2007) Use of hepatocytes to assess the contribution of hepatic uptake to clearance in vivo. Drug Metab Dispos 35:859–865

    Article  CAS  PubMed  Google Scholar 

  5. Ito K, Houston JB (2004) Comparison of the use of liver models for predicting drug clearance using in vitro kinetic data from hepatic microsomes and isolated hepatocytes. Pharm Res 21:785–792

    Article  CAS  PubMed  Google Scholar 

  6. Riley RJ, McGinnity DF, Austin RP (2005) A unified model for predicting human hepatic, metabolic clearance from in vitro intrinsic clearance data in hepatocytes and microsomes. Drug Metab Dispos 33:1304–1311

    Article  CAS  PubMed  Google Scholar 

  7. McGinnity DF, Soars MG, Urbanowicz RA, Riley RJ (2004) Evaluation of fresh and cryopreserved hepatocytes as in vitro drug metabolism tools for the prediction of metabolic clearance. Drug Metab Dispos 32:1247–1253

    Article  CAS  PubMed  Google Scholar 

  8. Funk C (2008) The role of hepatic transporters in drug elimination. Expert Opin Drug Metab Toxicol 4:363–379

    Article  CAS  PubMed  Google Scholar 

  9. Evans AM (1996) Membrane transport as a determinant of the hepatic elimination of drugs and metabolites. Clin Exp Pharmacol Physiol 23:970–974

    Article  CAS  PubMed  Google Scholar 

  10. Yamazaki M, Suzuki H, Sugiyama Y (1996) Recent advances in carrier-mediated hepatic uptake and biliary excretion of xenobiotics. Pharm Res 13:497–513

    Article  CAS  PubMed  Google Scholar 

  11. Kivisto KT, Niemi M (2007) Influence of drug transporter polymorphisms on pravastatin pharmacokinetics in humans. Pharm Res 24:239–247

    Article  PubMed  Google Scholar 

  12. Poirier A, Lave T, Portmann R, Brun ME, Senner F, Kansy M, Grimm HP, Funk C (2008) Design, data analysis and simulation of in vitro drug transport kinetic experiments using a mechanistic in vitro model. Drug Metab Dispos 36:2434–2444

    Article  CAS  PubMed  Google Scholar 

  13. Poirier A, Funk C, Scherrmann JM, Lave T (2009) Mechanistic modelling of hepatic transport from cells to whole body: application to napsagatran and fexofenadine. Mol Pharm

  14. Shitara Y, Sato H, Sugiyama Y (2005) Evaluation of drug-drug interaction in the hepatobiliary and renal transport of drugs. Annu Rev Pharmacol Toxicol 45:689–723

    Article  CAS  PubMed  Google Scholar 

  15. Paine SW, Parker AJ, Gardiner P, Webborn PJ, Riley RJ (2008) Prediction of the pharmacokinetics of atorvastatin, cerivastatin, and indomethacin using kinetic models applied to isolated rat hepatocytes. Drug Metab Dispos 36:1365–1374

    Article  CAS  PubMed  Google Scholar 

  16. Wu CY, Benet LZ (2005) Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res 22:11–23

    Article  CAS  PubMed  Google Scholar 

  17. Fukuda H, Ohashi R, Tsuda-Tsukimoto M, Tamai I (2008) Effect of plasma protein binding on in vitro-in vivo correlation of biliary excretion of drugs evaluated by sandwich-cultured rat hepatocytes. Drug Metab Dispos 36:1275–1282

    Article  CAS  PubMed  Google Scholar 

  18. Waldmeier F, Flesch G, Muller P, Winkler T, Kriemler HP, Buhlmayer P, De Gasparo M (1997) Pharmacokinetics, disposition and biotransformation of [14C]-radiolabelled valsartan in healthy male volunteers after a single oral dose. Xenobiotica 27:59–71

    Article  CAS  PubMed  Google Scholar 

  19. Markham A, Goa KL (1997) Valsartan. A review of its pharmacology and therapeutic use in essential hypertension. Drugs 54:299–311

    Article  CAS  PubMed  Google Scholar 

  20. Yamashiro W, Maeda K, Hirouchi M, Adachi Y, Hu Z, Sugiyama Y (2006) Involvement of transporters in the hepatic uptake and biliary excretion of valsartan, a selective antagonist of the Angiotensin II AT1-receptor, in humans. Drug Metab Dispos 34:1247–1254

    Article  CAS  PubMed  Google Scholar 

  21. Flesch G, Muller P, Lloyd P (1997) Absolute bioavailability and pharmacokinetics of valsartan, an angiotensin II receptor antagonist, in man. Eur J Clin Pharmacol 52:115–120

    Article  CAS  PubMed  Google Scholar 

  22. Ries J, Wienen W (2003) Serine proteases as targets for antithrombotic therapy. Drugs Future 28:355–370

    Article  CAS  Google Scholar 

  23. Noe J, Portmann R, Brun ME, Funk C (2007) Substrate dependent drug-drug interactions between gemfibrozil, fluvastatin and other Oatp substrates on Oatp1b1, Oatp2b1 and Oatp1b3. Drug Metab Dispos 35:1308–1314

    Article  CAS  PubMed  Google Scholar 

  24. Luttringer O, Theil FP, Lave T, Wernli-Kuratli K, Guentert TW, de Saizieu A (2002) Influence of isolation procedure, extracellular matrix and dexamethasone on the regulation of membrane transporters gene expression in rat hepatocytes. Biochem Pharmacol 64:1637–1650

    Article  CAS  PubMed  Google Scholar 

  25. Blanchard N, Richert L, Notter B, Delobel F, David P, Coassolo P, Lave T (2004) Impact of serum on clearance predictions obtained from suspensions and primary cultures of rat hepatocytes. Eur J Pharm Sci 23:189–199

    Article  CAS  PubMed  Google Scholar 

  26. Seglen PO (1979) Hepatocyte suspensions and cultures as tools in experimental carcinogenesis. J Toxicol Environ Health 5:551–560

    Article  CAS  PubMed  Google Scholar 

  27. Strelevitz TJ, Foti RS, Fisher MB (2006) In vivo use of the P450 inactivator 1-aminobenzotriazole in the rat: varied dosing route to elucidate gut and liver contributions to first-pass and systemic clearance. J Pharm Sci 95:1334–1341

    Article  CAS  PubMed  Google Scholar 

  28. Reinoso RF, Telfer BA, Brennan BS, Rowland M (2001) Uptake of teicoplanin by isolated rat hepatocytes: comparison with in vivo hepatic distribution. Drug Metab Dispos 29:453–459

    CAS  PubMed  Google Scholar 

  29. Rowland M, Tozer TN (1995) Clinical pharmacokinetics: concepts and applications, 3rd edn. W. Wilkins, Philadelphia, PA

  30. Fagerholm U (2008) Prediction of human pharmacokinetics-biliary and intestinal clearance and enterohepatic circulation. J Pharm Pharmacol 60:535–542

    Article  CAS  PubMed  Google Scholar 

  31. Keppler D, Arias IM (1997) Hepatic canalicular membrane. Introduction: transport across the hepatocyte canalicular membrane. FASEB J 11:15–18

    CAS  PubMed  Google Scholar 

  32. Meier PJ, Sztul ES, Reuben A, Boyer JL (1984) Structural and functional polarity of canalicular and basolateral plasma membrane vesicles isolated in high yield from rat liver. J Cell Biol 98:991–1000

    Article  CAS  PubMed  Google Scholar 

  33. Yang J, Jamei M, Yeo KR, Rostami-Hodjegan A, Tucker GT (2007) Misuse of the well-stirred model of hepatic drug clearance. Drug Metab Dispos 35:501–502

    Article  CAS  PubMed  Google Scholar 

  34. Gabrielsson J, Weiner D (2006) Pharmacokinetic and pharmacodynamic data analysis: concept and applications, 4th edn. S.P. Society, Stockholm, Sweden

    Google Scholar 

  35. Rodgers T, Rowland M (2006) Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci 95:1238–1257

    Article  CAS  PubMed  Google Scholar 

  36. Rodgers T, Leahy D, Rowland M (2005) Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases. J Pharm Sci 94:1259–1276

    Article  CAS  PubMed  Google Scholar 

  37. Poulin P, Theil FP (2002) Prediction of pharmacokinetics prior to in vivo studies. 1. Mechanism-based prediction of volume of distribution. J Pharm Sci 91:129–156

    Article  CAS  PubMed  Google Scholar 

  38. Carlile DJ, Zomorodi K, Houston JB (1997) Scaling factors to relate drug metabolic clearance in hepatic microsomes, isolated hepatocytes, and the intact liver: studies with induced livers involving diazepam. Drug Metab Dispos 25:903–911

    CAS  PubMed  Google Scholar 

  39. Krishnamurthy GT, Krishnamurthy S (2002) Hepatic bile entry into and transit pattern within the gallbladder lumen: a new quantitative cholescintigraphic technique for measurement of its concentration function. J Nucl Med 43:901–908

    PubMed  Google Scholar 

  40. Colussi DM, Parisot C, Rossolino ML, Brunner LA, Lefevre GY (1997) Protein binding in plasma of valsartan, a new angiotensin II receptor antagonist. J Clin Pharmacol 37:214–221

    CAS  PubMed  Google Scholar 

  41. Pahlman I, Andersson S, Gunnarsson K, Odell ML, Wilen M (1999) Extensive biliary excretion of the sulfasalazine analogue, susalimod, but different concentrations in the bile duct in various animal species correlating to species-specific hepatobiliary toxicity. Pharmacol Toxicol 85:123–129

    Article  CAS  PubMed  Google Scholar 

  42. Lave T, Portmann R, Schenker G, Gianni A, Guenzi A, Girometta MA, Schmitt M (1999) Interspecies pharmacokinetic comparisons and allometric scaling of napsagatran, a low molecular weight thrombin inhibitor. J Pharm Pharmacol 51:85–91

    Article  CAS  PubMed  Google Scholar 

  43. Mahmood I, Sahajwalla C (2002) Interspecies scaling of biliary excreted drugs. J Pharm Sci 91:1908–1914

    Article  CAS  PubMed  Google Scholar 

  44. Lin JH (1995) Species similarities and differences in pharmacokinetics. Drug Metab Dispos 23:1008–1021

    CAS  PubMed  Google Scholar 

  45. Shilling AD, Azam F, Kao J, Leung L (2006) Use of canalicular membrane vesicles (CMVs) from rats, dogs, monkeys and humans to assess drug transport across the canalicular membrane. J Pharmacol Toxicol Methods 53:186–197

    Article  CAS  PubMed  Google Scholar 

  46. Li N, Zhang Y, Hua F, Lai Y (2009) Absolute difference of hepatobiliary transporter multidrug resistance-associated protein (MRP2/Mrp2) in liver tissues and isolated hepatocytes from rat, dog, monkey, and human. Drug Metab Dispos 37:66–73

    Article  CAS  PubMed  Google Scholar 

  47. Rippin SJ, Hagenbuch B, Meier PJ, Stieger B (2001) Cholestatic expression pattern of sinusoidal and canalicular organic anion transport systems in primary cultured rat hepatocytes. Hepatology 33:776–782

    Article  CAS  PubMed  Google Scholar 

  48. Turncliff RZ, Tian X, Brouwer KL (2006) Effect of culture conditions on the expression and function of Bsep, Mrp2, and Mdr1a/b in sandwich-cultured rat hepatocytes. Biochem Pharmacol 71:1520–1529

    Article  CAS  PubMed  Google Scholar 

  49. Lave T, Parrott N, Grimm HP, Fleury A, Reddy M (2007) Challenges and opportunities with modelling and simulation in drug discovery and drug development. Xenobiotica 37:1295–1310

    Article  CAS  PubMed  Google Scholar 

  50. Naritomi Y, Terashita S, Kagayama A, Sugiyama Y (2003) Utility of hepatocytes in predicting drug metabolism: comparison of hepatic intrinsic clearance in rats and humans in vivo and in vitro. Drug Metab Dispos 31:580–588

    Article  CAS  PubMed  Google Scholar 

  51. Kitamura S, Maeda K, Sugiyama Y (2008) Recent progresses in the experimental methods and evaluation strategies of transporter functions for the prediction of the pharmacokinetics in humans. Naunyn Schmiedebergs Arch Pharmacol 377(4–6):617–628

    Google Scholar 

  52. Kamiie J, Ohtsuki S, Iwase R, Ohmine K, Katsukura Y, Yanai K, Sekine Y, Uchida Y, Ito S, Terasaki T (2008) Quantitative atlas of membrane transporter proteins: development and application of a highly sensitive simultaneous LC/MS/MS method combined with novel in-silico peptide selection criteria. Pharm Res 25:1469–1483

    Article  CAS  PubMed  Google Scholar 

  53. Liu X, Chism JP, LeCluyse EL, Brouwer KR, Brouwer KL (1999) Correlation of biliary excretion in sandwich-cultured rat hepatocytes and in vivo in rats. Drug Metab Dispos 27:637–644

    CAS  PubMed  Google Scholar 

  54. Ghibellini G, Vasist LS, Leslie EM, Heizer WD, Kowalsky RJ, Calvo BF, Brouwer KL (2007) In vitro-in vivo correlation of hepatobiliary drug clearance in humans. Clin Pharmacol Ther 81:406–413

    Article  CAS  PubMed  Google Scholar 

  55. Abe K, Bridges AS, Yue W, Brouwer KL (2008) In vitro biliary clearance of angiotensin II receptor blockers and 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors in sandwich-cultured rat hepatocytes: comparison with in vivo biliary clearance. J Pharmacol Exp Ther 326:983–990

    Article  CAS  PubMed  Google Scholar 

  56. Venkatakrishnan K, von Moltke LL, Court MH, Harmatz JS, Crespi CL, Greenblatt DJ (2000) Comparison between cytochrome P450 (CYP) content and relative activity approaches to scaling from cDNA-expressed CYPs to human liver microsomes: ratios of accessory proteins as sources of discrepancies between the approaches. Drug Metab Dispos 28:1493–1504

    CAS  PubMed  Google Scholar 

  57. Maeda K, Ieiri I, Yasuda K, Fujino A, Fujiwara H, Otsubo K, Hirano M, Watanabe T, Kitamura Y, Kusuhara H, Sugiyama Y (2006) Effects of organic anion transporting polypeptide 1B1 haplotype on pharmacokinetics of pravastatin, valsartan, and temocapril. Clin Pharmacol Ther 79:427–439

    Article  CAS  PubMed  Google Scholar 

  58. Hagenbuch B, Gui C (2008) Xenobiotic transporters of the human organic anion transporting polypeptides (OATP) family. Xenobiotica 38:778–801

    Article  CAS  PubMed  Google Scholar 

  59. Houston JB (1994) Utility of in vitro drug metabolism data in predicting in vivo metabolic clearance. Biochem Pharmacol 47:1469–1479

    Article  CAS  PubMed  Google Scholar 

  60. Parrott N, Paquereau N, Coassolo P, Lave T (2005) An evaluation of the utility of physiologically based models of pharmacokinetics in early drug discovery. J Pharm Sci 94:2327–2343

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnès Poirier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poirier, A., Cascais, AC., Funk, C. et al. Prediction of pharmacokinetic profile of valsartan in human based on in vitro uptake transport data. J Pharmacokinet Pharmacodyn 36, 585–611 (2009). https://doi.org/10.1007/s10928-009-9139-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-009-9139-3

Keywords

Navigation