Skip to main content
Log in

Pressure-related Increase of Asymmetric Dimethylarginine Caused by Hyperbaric Oxygen in the Rat Brain: A Possible Neuroprotective Mechanism

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

A decrease in nitric oxide availability in the brain tissue due to the inhibition of nitric oxide synthase (NOS) activity during the early phases of hyperbaric oxygen (HBO) exposure was found to be involved in hyperoxic vasoconstriction leading to reduced regional cerebral blood flow. We hypothesized that the concentration of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase (NOS), may be an important factor during this hyperoxic vasoconstriction state. Rats were exposed to 1, 2 and 3 atmospheres pure oxygen for two hours. A fourth group of animals served as control. Asymmetric dimethylarginine, L-Arginine and nitrite/nitrate (NOx) concentrations were measured from deproteinized rat brain cytosols. In rat brains exposed to 3 atmospheres O2, ADMA and L-Arginine levels were found to be significantly higher and NOx significantly lower than control levels. Additionally, statistically significant correlations between ADMA and L-Arginine, and ADMA and NOx concentrations were detected. In conclusion, this is the first study indicating increased ADMA levels in rat brains exposed to HBO. The simultaneously decreased NOx values suggest that ADMA elevation resulted in NOS inhibition and therefore may be responsible for the early phase hyperoxic vasoconstriction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Feldmeier JJ (2003) Hyperbaric oxygen: indications and results; the hyperbaric oxygen therapy committee report. Undersea & Hyperbaric Medical Society, Kensington, MD

  2. Torbati D, Church DF, Keller JM et al (1992) Free radical generation in the brain precedes hyperbaric oxygen-induced convulsions. Free Rad Biol Med 13:101–106

    Article  PubMed  CAS  Google Scholar 

  3. Yusa T, Beckman JS, Crapo JD et al (1987) Hyperoxia increases H2O2 production by brain in vivo. J Appl Physiol 63:353–358

    PubMed  CAS  Google Scholar 

  4. Culotta E, Koshland DE Jr (1992) NO news is good news. Science 258:1862–1865

    Article  PubMed  CAS  Google Scholar 

  5. Moncada S, Higgs A (1993) The L-arginine-nitric oxide pathway. N Engl J Med 329:2002–2012

    Article  PubMed  CAS  Google Scholar 

  6. Bitterman N, Bitterman H (1998) L-Arginine-NO pathway and CNS oxygen toxicity. J Appl Physiol 84:1633–1638

    PubMed  CAS  Google Scholar 

  7. Chavko M, Braisted JC, Outsa NJ et al (1998) Role of cerebral blood flow in seizures from hyperbaric oxygen exposure. Brain Res 791:75–82

    Article  PubMed  CAS  Google Scholar 

  8. Oury TD, Ho YS, Piantadosi CA et al (1992) Extracellular superoxide dismutase, nitric oxide and central nervous system O2 toxicity. Proc Natl Acad Sci 89:9715–9717

    Article  PubMed  CAS  Google Scholar 

  9. Dawson VL, Dawson TM, London ED et al (1991) Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci 88:6368–6371

    Article  PubMed  CAS  Google Scholar 

  10. Lafon-Cazal M, Pietri S, Culcasi M et al (1993) NMDA-dependent superoxide production and neurotoxicity. Nature 364:535–537

    Article  PubMed  CAS  Google Scholar 

  11. Boger RH, Vallance P, Cooke JP (2003) Asymmetric dimethylarginine (ADMA): a key regulator of nitric oxide synthase. Atherosclerosis 4(Suppl):1–3

    PubMed  Google Scholar 

  12. Leiper J, Vallance P (1999) Biological significance of endogenous methylarginines that inhibit nitric oxide synthases. Cardiovasc Res 43:542–548

    Article  PubMed  CAS  Google Scholar 

  13. Hibbs JB Jr, Vavrin Z, Taintor RR (1987) L-arginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells. J Immunol 138:550–565

    PubMed  CAS  Google Scholar 

  14. Cardounel AJ, Zweier JL (2002) Endogenous methylarginines regulate neuronal nitric-oxide synthase and prevent excitotoxic injury. J Biol Chem 277:33995–34002

    Article  PubMed  CAS  Google Scholar 

  15. Chen BM, Xia LW, Zhao RQ (1997) Determination of NG,NG–dimethylarginine in human plasma by high-performance liquid chromatography. J Chromatog B 692:467–471

    Article  CAS  Google Scholar 

  16. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the folin-phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  17. Moshage H, Kok B, Huizenga JR et al (1995) Jansen P. Nitrite and nitrate determinations in plasma: a critical evaluation. Clin Chem 41:892–896

    PubMed  CAS  Google Scholar 

  18. Lipton SA, Choi YB, Pan ZH et al (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364:626–632

    Article  PubMed  CAS  Google Scholar 

  19. Chavko M, Nadi NS; Keyser DO (2004) Activation of BDNF mRNA and protein after seizures in hyperbaric oxygen: Implications for sensitization to seizures in re-exposures. Neurochem Res 27:1649–1653

    Article  Google Scholar 

  20. Demchenko IT, Boso AE, Whorton AR et al (2001) Nitric oxide production is enhanced in rat brain before oxygen-induced convulsions. Brain Res 917:253–261

    Article  PubMed  CAS  Google Scholar 

  21. Demchenko IT, Dmitri N, Atochin B et al (2003) Oxygen seizure latency and peroxynitrite formation in mice lacking neuronal or endothelial nitric oxide synthases. Neurosci Lett 344:53–56

    Article  PubMed  CAS  Google Scholar 

  22. Anggard E (1994) Nitric oxide: mediator, murderer, and medicine. Lancet 343:1199–1206

    Article  PubMed  CAS  Google Scholar 

  23. Elayan IM, Axley MJ, Prasad PV et al (2000) Effect of hyperbaric oxygen treatment on nitric oxide and oxygen free radicals in rat brain. J Neurophysiol 83:2022–2029

    PubMed  CAS  Google Scholar 

  24. Thom SR, Bhopale V, Fisher D et al (2002) Stimulation of nitric oxide synthase in cerebral cortex due to elevated partial pressure of oxygen: an oxidative stress response. J Neurobiol 51:85–100

    Article  PubMed  CAS  Google Scholar 

  25. Chavko M, Auker CR, McCarron RM et al (2003) Relationship between protein nitration and oxidation and development of hyperoxic seizures. Nitric Oxide 9:18–23

    Article  PubMed  CAS  Google Scholar 

  26. Demchenko IT, Boso AE, Bennet PB et al (2000) Hyperbaric oxygen reduces cerebral blood flow by inactivatin nitric oxide. Nitric Oxide 4:597–608

    Article  PubMed  CAS  Google Scholar 

  27. Sato T, Takeda Y, Hagioka S et al (2001) Changes in nitric oxide production and cerebral blood flow before development of hyperbaric oxygen-induced seizures in rats. Brain Res 918:131–140

    Article  PubMed  CAS  Google Scholar 

  28. Zhilyaev SY, Moskvin AN, Platanova TF et al (2003) Hyperoxic vasoconstriction in the brain is mediated by inactivation of nitric oxide by superoxide anions. Neurosci Behav Physiol 33:783–787

    Article  PubMed  Google Scholar 

  29. Ito T, Yufu K, Mori A et al (1996) Oxidative stress alters arginine metabolism in rat brain: Effect of sub-convulsive hyperbaric oxygen exposure. Neurochem Int 29:187–195

    Article  PubMed  CAS  Google Scholar 

  30. Sydow K, Munzel T (2003) ADMA and oxidative stress. Atheroscler Suppl 4:41–51

    Article  PubMed  CAS  Google Scholar 

  31. Oter S, Korkmaz A, Topal T et al (2005) Correlation between hyperbaric oxygen exposure pressures and oxidative parameters in rat lung, brain, and erythrocytes. Clin Biochem 38:706–711

    Article  PubMed  CAS  Google Scholar 

  32. Dundar K, Topal T, Ay H et al (2005) Protective effects of exogenously administered or endogenously produced melatonin on hyperbaric oxygen-induced oxidative stress in the rat brain. Clin Exp Pharmacol Physiol 32:926–390

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mr. Aydin Yulug, M.D., for help with the English revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sükrü Öter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akgül, E.Ö., Cakir, E., Özcan, Ö. et al. Pressure-related Increase of Asymmetric Dimethylarginine Caused by Hyperbaric Oxygen in the Rat Brain: A Possible Neuroprotective Mechanism. Neurochem Res 32, 1586–1591 (2007). https://doi.org/10.1007/s11064-007-9363-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9363-4

Keywords

Navigation