Skip to main content
Log in

The Proteasome Inhibitor MG-132 Induces AIF Nuclear Translocation Through Down-Regulation of ERK and Akt/mTOR Pathway

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Anticancer activity of proteasome inhibitors has been demonstrated in various cancer cell types. However, mechanisms by which they exert anticancer action were not fully understood. The present study was undertaken to examine the effect of the proteasome inhibitor MG-132 and the underlying mechanism in glioma cells. MG-132 caused alterations in mitochondrial membrane potential and apoptosis-inducing factor (AIF) nuclear translocation. MG-132 induced reduction in ERK and Akt activation. The transient transfection of constitutively active forms of MEK, an upstream of ERK, and Akt blocked the MG-132-induced cell death. Similarly to down-regulation of Akt, expression levels of mTOR were inhibited by MG-132. Addition of rapamycin, an inhibitor of mTOR, caused stimulation of the MG-132-induced cell death. There were no significant changes in levels of XIAP, survivin, and Bax. Overexpression of constitutively active forms of MEK and Akt blocked the MG-132-induced AIF nuclear translocation. These findings indicate that MG-132 induces AIF nuclear translocation through down-regulation of ERK and Akt/mTOR pathways. These data suggest that proteasome inhibitors may serve as potential therapeutic agents for malignant human gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stewart LA (2002) Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet 359(9311):1011–1018

    Article  PubMed  CAS  Google Scholar 

  2. Ohgaki H, Kleihues P (2005) Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 64(6):479–489

    PubMed  CAS  Google Scholar 

  3. Johnstone RW, Ruefli AA, Lowe SW (2002) Apoptosis: a link between cancer genetics and chemotherapy. Cell 108(2):153–164

    Article  PubMed  CAS  Google Scholar 

  4. Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, Lazarus DD, Maas J, Pien CS, Prakash S, Elliott PJ (1999) Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 59(11):2615–2622

    PubMed  CAS  Google Scholar 

  5. Baumeister W, Walz J, Zuhl F, Seemuller E (1998) The proteasome: paradigm of a self-compartmentalizing protease. Cell 92(3):367–380

    Article  PubMed  CAS  Google Scholar 

  6. Sterz J, von Metzler I, Hahne JC, Lamottke B, Rademacher J, Heider U, Terpos E, Sezer O (2008) The potential of proteasome inhibitors in cancer therapy. Expert Opin Investig Drugs 17(6):879–895

    Article  PubMed  CAS  Google Scholar 

  7. Spano JP, Bay JO, Blay JY, Rixe O (2005) Proteasome inhibition: a new approach for the treatment of malignancies. Bull Cancer 92(11):E61–E66, 945–952

    Google Scholar 

  8. Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89(2):271–277

    Article  PubMed  CAS  Google Scholar 

  9. Kroemer G, Dallaporta B, Resche-Rigon M (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60:619–642

    Article  PubMed  CAS  Google Scholar 

  10. Pastorino JG, Snyder JW, Serroni A, Hoek JB, Farber JL (1993) Cyclosporin and carnitine prevent the anoxic death of cultured hepatocytes by inhibiting the mitochondrial permeability transition. J Biol Chem 268(19):13791–13798

    PubMed  CAS  Google Scholar 

  11. Joza N, Susin SA, Daugas E, Stanford WL, Cho SK, Li CY, Sasaki T, Elia AJ, Cheng HY, Ravagnan L, Ferri KF, Zamzami N, Wakeham A, Hakem R, Yoshida H, Kong YY, Mak TW, Zuniga-Pflucker JC, Kroemer G, Penninger JM (2001) Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410(6828):549–554

    Article  PubMed  CAS  Google Scholar 

  12. Otera H, Ohsakaya S, Nagaura Z, Ishihara N, Mihara K (2005) Export of mitochondrial AIF in response to proapoptotic stimuli depends on processing at the intermembrane space. EMBO J 24(7):1375–1386

    Article  PubMed  CAS  Google Scholar 

  13. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397(6718):441–446

    Article  PubMed  CAS  Google Scholar 

  14. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270(5240):1326–1331

    Article  PubMed  CAS  Google Scholar 

  15. Cobb MH (1999) MAP kinase pathways. Prog Biophys Mol Biol 71(3–4):479–500

    Article  PubMed  CAS  Google Scholar 

  16. Coffer PJ, Jin J, Woodgett JR (1998) Protein kinase B (c-Akt): a multifunctional mediator of phosphatidylinositol 3-kinase activation. Biochem J 335(Pt 1):1–13

    PubMed  CAS  Google Scholar 

  17. Martin KA, Blenis J (2002) Coordinate regulation of translation by the PI 3-kinase and mTOR pathways. Adv Cancer Res 86:1–39

    Article  PubMed  CAS  Google Scholar 

  18. Le Tourneau C, Faivre S, Serova M, Raymond E (2008) mTORC1 inhibitors: is temsirolimus in renal cancer telling us how they really work? Br J Cancer 99(8):1197–1203

    Article  PubMed  CAS  Google Scholar 

  19. Foti C, Florean C, Pezzutto A, Roncaglia P, Tomasella A, Gustincich S, Brancolini C (2009) Characterization of caspase-dependent and caspase-independent deaths in glioblastoma cells treated with inhibitors of the ubiquitin-proteasome system. Mol Cancer Ther 8(11):3140–3150

    Article  PubMed  CAS  Google Scholar 

  20. Kitagawa H, Tani E, Ikemoto H, Ozaki I, Nakano A, Omura S (1999) Proteasome inhibitors induce mitochondria-independent apoptosis in human glioma cells. FEBS Lett 443(2):181–186

    Article  PubMed  CAS  Google Scholar 

  21. Yu C, Friday BB, Yang L, Atadja P, Wigle D, Sarkaria J, Adjei AA (2008) Mitochondrial Bax translocation partially mediates synergistic cytotoxicity between histone deacetylase inhibitors and proteasome inhibitors in glioma cells. Neuro Oncol 10(3):309–319

    Article  PubMed  CAS  Google Scholar 

  22. Wagenknecht B, Hermisson M, Groscurth P, Liston P, Krammer PH, Weller M (2000) Proteasome inhibitor-induced apoptosis of glioma cells involves the processing of multiple caspases and cytochrome c release. J Neurochem 75(6):2288–2297

    Article  PubMed  CAS  Google Scholar 

  23. Laurent N, de Bouard S, Guillamo JS, Christov C, Zini R, Jouault H, Andre P, Lotteau V, Peschanski M (2004) Effects of the proteasome inhibitor ritonavir on glioma growth in vitro and in vivo. Mol Cancer Ther 3(2):129–136

    PubMed  CAS  Google Scholar 

  24. Roth P, Kissel M, Herrmann C, Eisele G, Leban J, Weller M, Schmidt F (2009) SC68896, a novel small molecule proteasome inhibitor, exerts antiglioma activity in vitro and in vivo. Clin Cancer Res 15(21):6609–6618

    Article  PubMed  CAS  Google Scholar 

  25. Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13(15):1899–1911

    Article  PubMed  CAS  Google Scholar 

  26. Tatton WG, Olanow CW (1999) Apoptosis in neurodegenerative diseases: the role of mitochondria. Biochim Biophys Acta 1410(2):195–213

    Article  PubMed  CAS  Google Scholar 

  27. Poppe M, Reimertz C, Dussmann H, Krohn AJ, Luetjens CM, Bockelmann D, Nieminen AL, Kogel D, Prehn JH (2001) Dissipation of potassium and proton gradients inhibits mitochondrial hyperpolarization and cytochrome c release during neural apoptosis. J Neurosci 21(13):4551–4563

    PubMed  CAS  Google Scholar 

  28. Nowak G (2002) PKC-a and ERK1/2 mediate mitochondrial dysfunction, decreases in active Na+ transport, and cisplatin-induced apoptosis in renal cells. J Biol Chem 277:43377–43388

    Article  PubMed  CAS  Google Scholar 

  29. Ling YH, Liebes L, Zou Y, Perez-Soler R (2003) Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to Bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells. J Biol Chem 278(36):33714–33723

    Article  PubMed  CAS  Google Scholar 

  30. Papa L, Gomes E, Rockwell P (2007) Reactive oxygen species induced by proteasome inhibition in neuronal cells mediate mitochondrial dysfunction and a caspase-independent cell death. Apoptosis 12(8):1389–1405

    Article  PubMed  CAS  Google Scholar 

  31. Monney L, Otter I, Olivier R, Ozer HL, Haas AL, Omura S, Borner C (1998) Defects in the ubiquitin pathway induce caspase-independent apoptosis blocked by Bcl-2. J Biol Chem 273(11):6121–6131

    Article  PubMed  CAS  Google Scholar 

  32. Bhaskara VK, Sundaram C, Babu PP (2006) pERK, pAkt and pBad: a possible role in cell proliferation and sustained cellular survival during tumorigenesis and tumor progression in ENU induced transplacental glioma rat model. Neurochem Res 31(9):1163–1170

    Article  PubMed  CAS  Google Scholar 

  33. Jacques-Silva MC, Bernardi A, Rodnight R, Lenz G (2004) ERK, PKC and PI3 K/Akt pathways mediate extracellular ATP and adenosine-induced proliferation of U138-MG human glioma cell line. Oncology 67(5–6):450–459

    Article  PubMed  CAS  Google Scholar 

  34. Wang L, Liu F, Adamo ML (2001) Cyclic AMP inhibits extracellular signal-regulated kinase and phosphatidylinositol 3-kinase/Akt pathways by inhibiting Rap1. J Biol Chem 276(40):37242–37249

    Article  PubMed  CAS  Google Scholar 

  35. Ai Z, Yin L, Zhou X, Zhu Y, Zhu D, Yu Y, Feng Y (2006) Inhibition of survivin reduces cell proliferation and induces apoptosis in human endometrial cancer. Cancer 107(4):746–756

    Article  PubMed  CAS  Google Scholar 

  36. Yao LL, Wang YG, Cai WJ, Yao T, Zhu YC (2007) Survivin mediates the anti-apoptotic effect of delta-opioid receptor stimulation in cardiomyocytes. J Cell Sci 120(Pt 5):895–907

    Article  PubMed  CAS  Google Scholar 

  37. Mitchell C, Park MA, Zhang G, Yacoub A, Curiel DT, Fisher PB, Roberts JD, Grant S, Dent P (2007) Extrinsic pathway- and cathepsin-dependent induction of mitochondrial dysfunction are essential for synergistic flavopiridol and vorinostat lethality in breast cancer cells. Mol Cancer Ther 6(12 Pt 1):3101–3112

    Article  PubMed  CAS  Google Scholar 

  38. Faivre S, Kroemer G, Raymond E (2006) Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 5(8):671–688

    Article  PubMed  CAS  Google Scholar 

  39. Karmakar S, Banik NL, Ray SK (2008) Combination of all-trans retinoic acid and paclitaxel-induced differentiation and apoptosis in human glioblastoma U87MG xenografts in nude mice. Cancer 112(3):596–607

    Article  PubMed  CAS  Google Scholar 

  40. Otera H, Ohsakaya S, Nagaura Z, Ishihara N, Mihara K (2005) Export of mitochondrial AIF in response to proapoptotic stimuli depends on processing at the intermembrane space. EMBO J 24(7):1375–1386

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chae Hwa Kwon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ko, J.K., Choi, C.H., Kim, Y.K. et al. The Proteasome Inhibitor MG-132 Induces AIF Nuclear Translocation Through Down-Regulation of ERK and Akt/mTOR Pathway. Neurochem Res 36, 722–731 (2011). https://doi.org/10.1007/s11064-010-0387-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0387-9

Keywords

Navigation