Skip to main content

Advertisement

Log in

Molecular Insights into the Structure–Function Relationship of Organic Anion Transporters OATs

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The organic anion transporter (OAT) family encoded by SLC22A mediates the absorption, distribution, and excretion of a diverse array of environmental toxins, and clinically important drugs, including anti-HIV therapeutics, anti-tumor drugs, antibiotics, anti-hypertensives, and anti-inflammatories, and therefore is critical for the survival of mammalian species. Several OATs have been identified: OAT1 (SLC22A6), OAT2 (SLC22A7), OAT3 (SLC22A8), OAT4 (SLC22A11), OAT5 (SLC22A19) OAT6 (SLC22A20) and URAT1 (SLC22A12). The expressions of these OATs have been detected in key organs such as kidney, liver, brain and placenta. OAT dysfunction in these organs may contribute to the renal, hepatic, neurological and fetal toxicity and diseases. In this review, we summarize, according to the work done by our laboratory as well as by others, the most updated molecular studies on these OAT members, especially on the aspect of their structure–function relationships. The functional roles of N-glycosylation, transmembrane domains and individual amino acids, cell surface assembly, as well as associating proteins will be discussed. In addition, we will show the recent analyses of coding region polymorphisms of OATs, which give us information on the genetic variants of OATs and their potential effects on OAT functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. You. The role of organic ion transporters in drug disposition: an update. Curr. Drug Metab. 5:55–62 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. G. You. Structure, function, and regulation of renal organic anion transporters. Med. Res. Rev. 22:602–616 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. G. You. Towards an understanding of organic anion transporters: structure–function relationships. Med. Res. Rev. 24:762–774 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. T. Sekine, H. Miyazaki, and H. Endou. Molecular physiology of renal organic anion transporters. Am. J. Physiol. Renal. Physiol. 290:F251–F261 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. B. C. Burckhardt, and G. Burckhardt. Transport of organic anions across the basolateral membrane of proximal tubule cells. Rev. Physiol. Biochem. Pharmacol. 146:95–158 (2003).

    CAS  PubMed  Google Scholar 

  6. D. H. Sweet. Organic anion transporter (Slc22a) family members as mediators of toxicity. Toxicol. Appl. Pharmacol. 204:198–215 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. S. A. Eraly, K. T. Bush, R. V. Sampogna, V. Bhatnagar, and S. K. Nigam. The molecular pharmacology of organic anion transporters: from DNA to FDA?. Mol. Pharmacol. 65:479–487 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. M. J. Dresser, M. K. Leabman, and K. M. Giacomini. Transporters involved in the elimination of drugs in the kidney: organic anion transporters and organic cation transporters. J. Pharm. Sci. 90:397–421 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. H. Miyazaki, T. Sekine, and H. Endou. The multispecific organic anion transporter family: properties and pharmacological significance. Trends Pharmacol. Sci. 25:654–662 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. T. Sekine, S. H. Cha, and H. Endou. The multispecific organic anion transporter (OAT) family. Pflugers Arch. 440:337–350 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. C. E. Lopez-Nieto, G. You, K. T. Bush, E. J. Barros, D. R. Beier, and S. K. Nigam. Molecular cloning and characterization of NKT, a gene product related to the organic cation transporter family that is almost exclusively expressed in the kidney. J. Biol. Chem. 272:6471–6478 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. T. Sekine, N. Watanabe, M. Hosoyamada, Y. Kanai, and H. Endou. Expression cloning and characterization of a novel multispecific organic anion transporter. J. Biol. Chem. 272:18526–18529 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. D. H. Sweet, N. A. Wolff, and J. B. Pritchard. Expression cloning and characterization of ROAT1. The basolateral organic anion transporter in rat kidney. J. Biol. Chem. 272:30088–30095 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. N. A. Wolff, A. Werner, S. Burkhardt, and G. Burckhardt. Expression cloning and characterization of a renal organic anion transporter from winter flounder. FEBS Lett. 417:287–291 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. S. H. Cha, T. Sekine, J. I. Fukushima, Y. Kanai, Y. Kobayashi, T. Goya, and H. Endou. Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Mol. Pharmacol. 59:1277–1286 (2001).

    CAS  PubMed  Google Scholar 

  16. T. Cihlar, D. C. Lin, J. B. Pritchard, M. D. Fuller, D. B. Mendel, and D. H. Sweet. The antiviral nucleotide analogs cidofovir and adefovir are novel substrates for human and rat renal organic anion transporter 1. Mol. Pharmacol. 56:570–580 (1999).

    CAS  PubMed  Google Scholar 

  17. M. Hosoyamada, T. Sekine, Y. Kanai, and H. Endou. Molecular cloning and functional expression of a multispecific organic anion transporter from human kidney. Am. J. Physiol. 276:F122–F128 (1999).

    CAS  PubMed  Google Scholar 

  18. R. Kojima, T. Sekine, M. Kawachi, S. H. Cha, Y. Suzuki, and H. Endou. Immunolocalization of multispecific organic anion transporters, OAT1, OAT2, and OAT3, in rat kidney. J. Am. Soc. Nephrol. 13:848–857 (2002).

    CAS  PubMed  Google Scholar 

  19. H. Kusuhara, T. Sekine, N. Utsunomiya-Tate, M. Tsuda, R. Kojima, S. H. Cha, Y. Sugiyama, Y. Kanai, and H. Endou. Molecular cloning and characterization of a new multispecific organic anion transporter from rat brain. J. Biol. Chem. 274: 13675–13680 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. R. Lu, B. S. Chan, and V. L. Schuster. Cloning of the human kidney PAH transporter: narrow substrate specificity and regulation by protein kinase C. Am. J. Physiol. 276:F295–F303 (1999).

    CAS  PubMed  Google Scholar 

  21. H. Motohashi, Y. Sakurai, H. Saito, S. Masuda, Y. Urakami, M. Goto, A. Fukatsu, O. Ogawa, and K. Inui. Gene expression levels and immunolocalization of organic ion transporters in the human kidney. J. Am. Soc. Nephrol. 13:866–874 (2002).

    CAS  PubMed  Google Scholar 

  22. J. E. Race, S. M. Grassl, W. J. Williams, and E. J. Holtzman. Molecular cloning and characterization of two novel human renal organic anion transporters (hOAT1 and hOAT3). Biochem. Biophys. Res. Commun. 255:508–514 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. H. Tahara, M. Shono, H. Kusuhara, H. Kinoshita, E. Fuse, A. Takadate, M. Otagiri, and Y. Sugiyama. Molecular cloning and functional analyses of OAT1 and OAT3 from cynomolgus monkey kidney. Pharm. Res. 22:647–660 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. A. Tojo, T. Sekine, N. Nakajima, M. Hosoyamada, Y. Kanai, K. Kimura, and H. Endou. Immunohistochemical localization of multispecific renal organic anion transporter 1 in rat kidney. J. Am. Soc. Nephrol. 10:464–471 (1999).

    CAS  PubMed  Google Scholar 

  25. M. Alebouyeh, M. Takeda, M. L. Onozato, A. Tojo, R. Noshiro, H. Hasannejad, J. Inatomi, S. Narikawa, X. L. Huang, S. Khamdang, N. Anzai, and H. Endou. Expression of human organic anion transporters in the choroid plexus and their interactions with neurotransmitter metabolites. J. Pharmacol. Sci. 93:430–436 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. D. H. Sweet, L. M. Chan, R. Walden, X. P. Yang, D. S. Miller, and J. B. Pritchard. Organic anion transporter 3 (Slc22a8) is a dicarboxylate exchanger indirectly coupled to the Na+ gradient. Am. J. Physiol. Renal. Physiol. 284:F763–F769 (2003).

    CAS  PubMed  Google Scholar 

  27. A. Enomoto, M. Takeda, M. Shimoda, S. Narikawa, Y. Kobayashi, Y. Kobayashi, T. Yamamoto, T. Sekine, S. H. Cha, T. Niwa, and H. Endou. Interaction of human organic anion transporters 2 and 4 with organic anion transport inhibitors. J. Pharmacol. Exp. Ther. 301:797–802 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Y. Kobayashi, N. Ohshiro, A. Shibusawa, T. Sasaki, S. Tokuyama, T. Sekine, H. Endou, and T. Yamamoto. Isolation, characterization and differential gene expression of multispecific organic anion transporter 2 in mice. Mol. Pharmacol. 62:7–14 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. T. Sekine, S. H. Cha, M. Tsuda, N. Apiwattanakul, N. Nakajima, Y. Kanai, and H. Endou. Identification of multispecific organic anion transporter 2 expressed predominantly in the liver. FEBS Lett. 429:179–182 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. G. D. Simonson, A. C. Vincent, K. J. Roberg, Y. Huang, and V. Iwanij. Molecular cloning and characterization of a novel liver-specific transport protein. J. Cell. Sci. 107(Pt 4):1065–1072 (1994).

    CAS  PubMed  Google Scholar 

  31. Y. Kobayashi, N. Ohshiro, R. Sakai, M. Ohbayashi, N. Kohyama, and T. Yamamoto. Transport mechanism and substrate specificity of human organic anion transporter 2 (hOat2 [SLC22A7]). J. Pharm. Pharmacol. 57:573–578 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. S. H. Cha, T. Sekine, H. Kusuhara, E. Yu, J. Y. Kim, D. K. Kim, Y. Sugiyama, Y. Kanai, and H. Endou. Molecular cloning and characterization of multispecific organic anion transporter 4 expressed in the placenta. J. Biol. Chem. 275:4507–4512 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. S. Ekaratanawong, N. Anzai, P. Jutabha, H. Miyazaki, R. Noshiro, M. Takeda, Y. Kanai, S. Sophasan, and H. Endou. Human organic anion transporter 4 is a renal apical organic anion/dicarboxylate exchanger in the proximal tubules. J. Pharmacol. Sci. 94:297–304 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. N. Anzai, P. Jutabha, A. Enomoto, H. Yokoyama, H. Nonoguchi, T. Hirata, K. Shiraya, X. He, S. H. Cha, M. Takeda, H. Miyazaki, T. Sakata, K. Tomita, T. Igarashi, Y. Kanai, and H. Endou. Functional characterization of rat organic anion transporter 5 (slc22a19) at the apical membrane of renal proximal tubules. J. Pharmacol. Exp. Ther. 315:534–544 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. J. O. Kwak, H. W. Kim, K. J. Oh, C. B. Ko, H. Park, and S. H. Cha. Characterization of mouse organic anion transporter 5 as a renal steroid sulfate transporter. J. Steroid Biochem. Mol. Biol. 97:369–375 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. G. L. Youngblood, and D. H. Sweet. Identification and functional assessment of the novel murine organic anion transporter Oat5 (Slc22a19) expressed in kidney. Am. J. Physiol. Renal. Physiol. 287:F236–F244 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. J. C. Monte, M. A. Nagle, S. A. Eraly, and S. K. Nigam. Identification of a novel murine organic anion transporter family member, OAT6, expressed in olfactory mucosa. Biochem. Biophys. Res. Commun. 323:429–436 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. G. W. Schnabolk, G. L. Youngblood, and D. H. Sweet. Transport of Estrone Sulfate by the novel organic anion transporter OAT6 (Slc22a20). Am. J. Physiol. Renal. Physiol. 291:F314–F321 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. A. Enomoto, H. Kimura, A. Chairoungdua, Y. Shigeta, P. Jutabha, S. H. Cha, M. Hosoyamada, M. Takeda, T. Sekine, T. Igarashi, H. Matsuo, Y. Kikuchi, T. Oda, K. Ichida, T. Hosoya, K. Shimokata, T. Niwa, Y. Kanai, and H. Endou. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 417:447–452 (2002).

    CAS  PubMed  Google Scholar 

  40. G. You, K. Kuze, R. A. Kohanski, K. Amsler, and S. Henderson. Regulation of mOAT-mediated organic anion transport by okadaic acid and protein kinase C in LLC-PK(1) cells. J. Biol. Chem. 275:10278–10284 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. S. Soodvilai, V. Chatsudthipong, K. K. Evans, S. H. Wright, and W. H. Dantzler. Acute regulation of OAT3-mediated estrone sulfate transport in isolated rabbit renal proximal tubules. Am. J. Physiol. Renal. Physiol. 287:F1021–F1029 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Y. Uwai, M. Okuda, K. Takami, Y. Hashimoto, and K. Inui. Functional characterization of the rat multispecific organic anion transporter OAT1 mediating basolateral uptake of anionic drugs in the kidney. FEBS Lett. 438:321–324 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. N. A. Wolff, K. Thies, N. Kuhnke, G. Reid, B. Friedrich, F. Lang, and G. Burckhardt. Protein kinase C activation downregulates human organic anion transporter 1-mediated transport through carrier internalization. J. Am. Soc. Nephrol. 14:1959–1968 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. F. Zhou, N. P. Illsley, and G. You. Functional characterization of a human organic anion transporter hOAT4 in placental BeWo cells. Eur. J. Pharm. Sci. 27(5):518–523 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. D. Hesse, C. Sauvant, H. Holzinger, and M. Gekle. Apical expression or expression in a non polarized cell of hOAT1 inverses regulation by epidermal growth factor (EGF) as compared to basolateral hOAT1. Cell. Physiol. Biochem. 14:177–186 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. C. Sauvant, D. Hesse, H. Holzinger, K. K. Evans, W. H. Dantzler, and M. Gekle. Action of EGF and PGE2 on basolateral organic anion uptake in rabbit proximal renal tubules and hOAT1 expressed in human kidney epithelial cells. Am. J. Physiol. Renal. Physiol. 286:F774–F783 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. S. Soodvilai, S. H. Wright, W. H. Dantzler, and V. Chatsudthipong. Involvement of tyrosine kinase and PI3K in the regulation of OAT3-mediated estrone sulfate transport in isolated rabbit renal proximal tubules. Am. J. Physiol. Renal. Physiol. 289:F1057–F1064 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. J. Abramson, I. Smirnova, V. Kasho, G. Verner, H. R. Kaback, and S. Iwata. Structure and mechanism of the lactose permease of Escherichia coli. Science 301:610–615 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Y. Huang, M. J. Lemieux, J. Song, M. Auer, and D. N. Wang. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301:616–620 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. C. Popp, V. Gorboulev, T. D. Muller, D. Gorbunov, N. Shatskaya, and H. Koepsell. Amino acids critical for substrate affinity of rat organic cation transporter 1 line the substrate binding region in a model derived from the tertiary structure of lactose permease. Mol. Pharmacol. 67:1600–1611 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. X. Zhang, N. V. Shirahatti, D. Mahadevan, and S. H. Wright. A conserved glutamate residue in transmembrane helix 10 influences substrate specificity of rabbit OCT2 (SLC22A2). J. Biol. Chem. 280:34813–34822 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. K. Tanaka, W. Xu, F. Zhou, and G. You. Role of glycosylation in the organic anion transporter OAT1. J. Biol. Chem. 279:14961–14966 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. F. Zhou, W. Xu, M. Hong, Z. Pan, P. J. Sinko, J. Ma, and G. You. The role of N-linked glycosylation in protein folding, membrane targeting, and substrate binding of human organic anion transporter hOAT4. Mol. Pharmacol. 67:868–876 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. J. C. de Jong, P. H. Willems, F. J. Mooren, L. P. van den Heuvel, N. V. Knoers, and R. J. Bindels. The structural unit of the thiazide-sensitive NaCl cotransporter is a homodimer. J. Biol. Chem. 278:24302–24307 (2003).

    Article  PubMed  CAS  Google Scholar 

  55. F. Kilic and G. Rudnick. Oligomerization of serotonin transporter and its functional consequences. Proc. Natl. Acad. Sci. U. S. A. 97:3106–3111 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. J. Xu, Y. Liu, Y. Yang, S. Bates, and J. T. Zhang. Characterization of oligomeric human half-ABC transporter ATP-binding cassette G2. J. Biol. Chem. 279:19781–19789 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. M. Hong, W. Xu, T. Yoshida, K. Tanaka, D. J. Wolff, F. Zhou, M. Inouye, and G. You. Human organic anion transporter hOAT1 forms homooligomers. J. Biol. Chem. 280:32285–32290 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. G. M. Preston, J. S. Jung, W. B. Guggino, and P. Agre. The mercury-sensitive residue at cysteine 189 in the CHIP28 water channel. J. Biol. Chem. 268:17–20 (1993).

    CAS  PubMed  Google Scholar 

  59. R. MacKinnon. Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature 350:232–235 (1991).

    Article  CAS  PubMed  Google Scholar 

  60. H. H. Sitte, H. Farhan, and J. A. Javitch. Sodium-dependent neurotransmitter transporters: oligomerization as a determinant of transporter function and trafficking. Mol. Interv. 4:38–47 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. P. Scholze, M. Freissmuth, and H. H. Sitte. Mutations within an intramembrane leucine heptad repeat disrupt oligomer formation of the rat GABA transporter 1. J. Biol. Chem. 277:43682–43690 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. P. Burkhard, J. Stetefeld, and S. V. Strelkov. Coiled coils: a highly versatile protein folding motif. Trends Cell Biol. 11:82–88 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. P. Zhang, A. McAlinden, S. Li, T. Schumacher, H. Wang, S. Hu, L. Sandell, and E. Crouch. The amino-terminal heptad repeats of the coiled-coil neck domain of pulmonary surfactant protein d are necessary for the assembly of trimeric subunits and dodecamers. J. Biol. Chem. 276:19862–19870 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. R. Li, R. Gorelik, V. Nanda, P. B. Law, J. D. Lear, W. F. DeGrado, and J. S. Bennett. Dimerization of the transmembrane domain of Integrin alphaIIb subunit in cell membranes. J. Biol. Chem. 279:26666–26673 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. W. P. Russ, and D. M. Engelman. The GxxxG motif: a framework for transmembrane helix–helix association. J. Mol. Biol. 296:911–919 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. C. B. Dugani and A. Klip. Glucose transporter 4: cycling, compartments and controversies. EMBO Rep. 6:1137–1142 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. T. R. Muth, and M. J. Caplan. Transport protein trafficking in polarized cells. Annu. Rev. Cell Dev. Biol. 19:333–366 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. P. D. Wilson, A. C. Sherwood, K. Palla, J. Du, R. Watson, and J. T. Norman. Reversed polarity of Na(+) -K(+) -ATPase: mislocation to apical plasma membranes in polycystic kidney disease epithelia. Am. J. Physiol. 260:F420–F430 (1991).

    CAS  PubMed  Google Scholar 

  69. J. Biber, S. M. Gisler, N. Hernando, and H. Murer. Protein/protein interactions (PDZ) in proximal tubules. J. Membr. Biol. 203:111–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Y. Kato, C. Watanabe, and A. Tsuji. Regulation of drug transporters by PDZ adaptor proteins and nuclear receptors. Eur. J. Pharm. Sci. 27:487–500 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. C. Perego, C. Vanoni, A. Villa, R. Longhi, S. M. Kaech, E. Frohli, A. Hajnal, S. K. Kim, and G. Pietrini. PDZ-mediated interactions retain the epithelial GABA transporter on the basolateral surface of polarized epithelial cells. Embo. J. 18:2384–2393 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. V. Raghuram, H. Hormuth, and J. K. Foskett. A kinase-regulated mechanism controls CFTR channel gating by disrupting bivalent PDZ domain interactions. Proc. Natl. Acad. Sci. U. S. A. 100:9620–9625 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. S. Shenolikar, J. W. Voltz, C. M. Minkoff, J. B. Wade, and E. J. Weinman. Targeted disruption of the mouse NHERF-1 gene promotes internalization of proximal tubule sodium-phosphate cotransporter type IIa and renal phosphate wasting. Proc. Natl. Acad. Sci. U. S. A. 99:11470–11475 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. N. Anzai, H. Miyazaki, R. Noshiro, S. Khamdang, A. Chairoungdua, H. J. Shin, A. Enomoto, S. Sakamoto, T. Hirata, K. Tomita, Y. Kanai, and H. Endou. The multivalent PDZ domain-containing protein PDZK1 regulates transport activity of renal urate-anion exchanger URAT1 via its C terminus. J. Biol. Chem. 279:45942–45950 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. H. Miyazaki, N. Anzai, S. Ekaratanawong, T. Sakata, H. J. Shin, P. Jutabha, T. Hirata, X. He, H. Nonoguchi, K. Tomita, Y. Kanai, and H. Endou. Modulation of renal apical organic anion transporter 4 function by two PDZ domain-containing proteins. J. Am. Soc. Nephrol. 16:3498–3506 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. C. Schwencke, R. C. Braun-Dullaeus, C. Wunderlich, and R. H. Strasser. Caveolae and caveolin in transmembrane signaling: implications for human disease. Cardiovasc. Res. 70:42–49 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. J. O. Kwak, H. W. Kim, K. J. Oh, D. S. Kim, K. O. Han, and S. H. Cha. Co-localization and interaction of organic anion transporter 1 with caveolin-2 in rat kidney. Exp. Mol. Med. 37:204–212 (2005).

    CAS  PubMed  Google Scholar 

  78. J. O. Kwak, H. W. Kim, J. H. Song, M. J. Kim, H. S. Park, D. K. Hyun, D. S. Kim, and S. H. Cha. Evidence for rat organic anion transporter 3 association with caveolin-1 in rat kidney. IUBMB Life 57:109–117 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. S. A. Eraly, V. Vallon, D. A. Vaughn, J. A. Gangoiti, K. Richter, M. Nagle, J. C. Monte, T. Rieg, D. M. Truong, J. M. Long, B. A. Barshop, G. Kaler, and S. K. Nigam. Decreased renal organic anion secretion and plasma accumulation of endogenous organic anions in OAT1 knockout mice. J. Biol. Chem. 281(8):5072–5083 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. D. H. Sweet, D. S. Miller, J. B. Pritchard, Y. Fujiwara, D. R. Beier, and S. K. Nigam. Impaired organic anion transport in kidney and choroid plexus of organic anion transporter 3 (Oat3 (Slc22a8)) knockout mice. J. Biol. Chem. 277:26934–26943 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. G. Reid, N. A. Wolff, F. M. Dautzenberg, and G. Burckhardt. Cloning of a human renal p-aminohippurate transporter, hROAT1. Kidney Blood Press. Res. 21:233–237 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. W. Sun, R. R. Wu, P. D. van Poelje, and M. D. Erion. Isolation of a family of organic anion transporters from human liver and kidney. Biochem. Biophys. Res. Commun. 283:417–422 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. A. R. Asif, J. Steffgen, M. Metten, R. W. Grunewald, G. A. Muller, A. Bahn, G. Burckhardt, and Y. Hagos. Presence of organic anion transporters 3 (OAT3) and 4 (OAT4) in human adrenocortical cells. Pflugers Arch. 450:88–95 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. E. Babu, M. Takeda, S. Narikawa, Y. Kobayashi, A. Enomoto, A. Tojo, S. H. Cha, T. Sekine, D. Sakthisekaran, and H. Endou. Role of human organic anion transporter 4 in the transport of ochratoxin A. Biochim. Biophys. Acta 1590:64–75 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. M. Hong, F. Zhou, and G. You. Critical amino acid residues in transmembrane domain 1 of the human organic anion transporter hOAT1. J. Biol. Chem. 279:31478–31482 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. K. Tanaka, F. Zhou, K. Kuze, and G. You. Cysteine residues in the organic anion transporter mOAT1. Biochem. J. 380:283–287 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. N. A. Wolff, B. Grunwald, B. Friedrich, F. Lang, S. Godehardt, and G. Burckhardt. Cationic amino acids involved in dicarboxylate binding of the flounder renal organic anion transporter. J. Am. Soc. Nephrol. 12:2012–2018 (2001).

    CAS  PubMed  Google Scholar 

  88. B. Feng, M. J. Dresser, Y. Shu, S. J. Johns, and K. M. Giacomini. Arginine 454 and lysine 370 are essential for the anion specificity of the organic anion transporter, rOAT3. Biochemistry 40:5511–5520 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. B. Feng, Y. Shu, and K. M. Giacomini. Role of aromatic transmembrane residues of the organic anion transporter, rOAT3, in substrate recognition. Biochemistry 41:8941–8947 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. F. Zhou, K. Tanaka, Z. Pan, J. Ma, and G. You. The role of glycine residues in the function of human organic anion transporter 4. Mol. Pharmacol. 65:1141–1147 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. F. Zhou, Z. Pan, J. Ma, and G. You. Mutational analysis of histidine residues in human organic anion transporter 4 (hOAT4). Biochem. J. 384:87–92 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. K. Bleasby, L. A. Hall, J. L. Perry, H. W. Mohrenweiser, and J. B. Pritchard. Functional consequences of single nucleotide polymorphisms in the human organic anion transporter hOAT1 (SLC22A6). J. Pharmacol. Exp. Ther. 314:923–931 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. G. Xu, V. Bhatnagar, G. Wen, B. A. Hamilton, S. A. Eraly, and S. K. Nigam. Analyses of coding region polymorphisms in apical and basolateral human organic anion transporter (OAT) genes [OAT1 (NKT), OAT2, OAT3, OAT4, URAT (RST)]. Kidney Int. 68:1491–1499 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. A. R. Erdman, L. M. Mangravite, T. J. Urban, L. L. Lagpacan, R. A. Castro, M. de la Cruz, W. Chan, C. C. Huang, S. J. Johns, M. Kawamoto, D. Stryke, T. R. Taylor, E. J. Carlson, T. E. Ferrin, C. M. Brett, E. G. Burchard, and K. M. Giacomini. The human organic anion transporter 3 (OAT3; SLC22A8): genetic variation and functional genomics. Am. J. Physiol. Renal Physiol. 290(4):F905–F912 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Y. Nishizato, I. Ieiri, H. Suzuki, M. Kimura, K. Kawabata, T. Hirota, H. Takane, S. Irie, H. Kusuhara, Y. Urasaki, A. Urae, S. Higuchi, K. Otsubo, and Y. Sugiyama. Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes: consequences for pravastatin pharmacokinetics. Clin. Pharmacol. Ther. 73:554–565 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. H. I. Cheong, J. H. Kang, J. H. Lee, I. S. Ha, S. Kim, F. Komoda, T. Sekine, T. Igarashi, and Y. Choi. Mutational analysis of idiopathic renal hypouricemia in Korea. Pediatr. Nephrol. 20:886–890 (2005).

    Article  PubMed  Google Scholar 

  97. K. Ichida, M. Hosoyamada, I. Hisatome, A. Enomoto, M. Hikita, H. Endou, and T. Hosoya. Clinical and molecular analysis of patients with renal hypouricemia in Japan-influence of URAT1 gene on urinary urate excretion. J. Am. Soc. Nephrol. 15:164–173 (2004).

    Article  PubMed  Google Scholar 

  98. F. Komoda, T. Sekine, J. Inatomi, A. Enomoto, H. Endou, T. Ota, T. Matsuyama, T. Ogata, M. Ikeda, M. Awazu, K. Muroya, I. Kamimaki, and T. Igarashi. The W258X mutation in SLC22A12 is the predominant cause of Japanese renal hypouricemia. Pediatr. Nephrol. 19:728–733 (2004).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guofeng You.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, F., You, G. Molecular Insights into the Structure–Function Relationship of Organic Anion Transporters OATs. Pharm Res 24, 28–36 (2007). https://doi.org/10.1007/s11095-006-9144-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9144-9

Key words

Navigation