Skip to main content

Advertisement

Log in

Organic Anion Transporters of the SLC22 Family: Biopharmaceutical, Physiological, and Pathological Roles

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The human organic anion transporters OAT1, OAT2, OAT3, OAT4 and URAT1 belong to a family of poly-specific transporters mainly located in kidneys. Selected OATs occur also in liver, placenta, and brain. OATs interact with endogenous metabolic end products such as urate and acidic neutrotransmitter metabolites, as well as with a multitude of widely used drugs, including antibiotics, antihypertensives, antivirals, anti-inflammatory drugs, diuretics and uricosurics. Thereby, OATs play an important role in renal drug elimination and have an impact on pharmacokinetics. In this review we focus on the interaction of human OATs with drugs. We report the affinities of human OATs for drug classes and compare the putative importance of individual OATs for renal drug excretion. The role of OATs as sites of drug–drug interaction and mediators cell toxicity, their gender-dependent regulation in health and diseased states, and the possible impact of single nucleotide polymorphisms are also dealt with.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Koepsell, and H. Endou. The SLC22 drug transporter family. Pflügers Arch.Eur. J. Physiol. 447:666–676 (2004).

    CAS  Google Scholar 

  2. B. C. Burckhardt, and G. Burckhardt. Transport of organic anions across the basolateral membrane of proximal tubule cells. Rev. Physiol., Biochem. Pharmacol. 146:95–158 (2003).

    CAS  Google Scholar 

  3. S. H. Wright, and W. H. Dantzler. Molecular and cellular physiology of renal organic cation and anion transport. Physiol. Rev. 84:987–1049 (2004).

    PubMed  CAS  Google Scholar 

  4. T. Sekine, H. Miyazaki, and H. Endou. Molecular physiology of renal organic anion transporters. Am. J. Physiol. Renal Physiol. 290:F251–F261 (2004).

    Google Scholar 

  5. N. Anzai, Y. Kanai, and H. Endou. Organic anion transporter family: current knowledge. J. Pharmacol. Sci. 100:411–426 (2006).

    PubMed  CAS  Google Scholar 

  6. M. J. Dresser, M. K. Leabman, and K. M. Giacomini. Transporters involved in the elimination of drugs in the kidney: organic anion transporters and organic cation transporters. J. Pharm. Sci. 90:397–421 (2001).

    PubMed  CAS  Google Scholar 

  7. S. A. Eraly, K. T. Bush, R. V. Sampogna, V. Bhatnagar, and S. K. Nigam. The molecular pharmacology of organic anion transporters: from DNA to FDA? Mol. Pharmacol. 65:479–487 (2004).

    PubMed  CAS  Google Scholar 

  8. E. E. Robertson, and G. O. Rankin. Human renal organic anion transporters: characteristics and contributions to drug and drug metabolite excretion. Pharmacol. Ther. 109:399–412 (2006).

    PubMed  CAS  Google Scholar 

  9. F. G. M. Russel, R. Masereeuw, and R. A. M. H. Van Aubel. Molecular aspects of renal anionic drug transport. Annu. Rev. Physiol. 64:563–594 (2002).

    PubMed  CAS  Google Scholar 

  10. J. Van Montfoort, D. K. F. Meijer, G. M. M. Groothuis, H. Koepsell, and P. J. Meier. Drug uptake systems in liver and kidney. Curr. Drug Metab. 4:185–211 (2002).

    Google Scholar 

  11. S. A. Terlouw, R. Masereeuw, and F. G. M. Russel. Modulatory effects of hormones, drugs, and toxic events on renal organic anion transport. Biochem. Pharmacol. 65:1393–1405 (2003).

    PubMed  CAS  Google Scholar 

  12. D. H. Sweet. Organic anion transporter (Slc22a) family members as mediators of toxicity. Toxicol. Appl. Pharmacol. 204:198–215 (2005).

    PubMed  CAS  Google Scholar 

  13. N. Anzai, P. Jutabha, Y. Kanai, and H. Endou. Integrated physiology of proximal tubular organic anion transport. Curr. Opin. Nephrol. Hypertens. 14:1–8 (2005).

    Google Scholar 

  14. S. A. Eraly, R. C. Blantz, V. Bhatnagar, and S. K. Nigam. Novel aspects of renal organic anion transporters. Curr. Opin. Nephrol. Hypertens. 12:551–558 (2003).

    PubMed  CAS  Google Scholar 

  15. T. Sekine, N. Watanabe, M. Hosoyamada, Y. Kanai, and H. Endou. Expression cloning and characterization of a novel multispecific organic anion transporter. J. Biol. Chem. 272:18526–18529 (1997).

    PubMed  CAS  Google Scholar 

  16. D. H. Sweet, N. A. Wolff, and J. B. Pritchard. Expression cloning and characterization of ROAT1. J. Biol. Chem. 272:30088–30095 (1997).

    PubMed  CAS  Google Scholar 

  17. C. E. Lopez-Nieto, G. F. You, K. T. Bush, E. J. G. Barros, D. R. Beier, and S. K. Nigam. Molecular cloning and characterization of NKT, a gene product related to the organic cation transporter family that is almost exclusively expressed in the kidney. J. Biol. Chem. 272:6471–6478 (1997).

    PubMed  CAS  Google Scholar 

  18. N. A. Wolff, A. Werner, S. Burkhardt, and G. Burckhardt. Expression cloning and characterization of a renal organic anion transporter from winter flounder. FEBS Lett. 417:287–291 (1997).

    PubMed  CAS  Google Scholar 

  19. G. Reid, N. A. Wolff, F. M. Dautzenberg, and G. Burckhardt. Cloning of a human renal p-aminohippurate transporter, hROAT1. Kidney Blood Press. Res. 21:233–237 (1998).

    PubMed  CAS  Google Scholar 

  20. M. Hosoyamada, T. Sekine, Y. Kanai, and H. Endou. Molecular cloning and functional expression of a multispecific organic anion transporter from human kidney. Am. J. Physiol. Renal Physiol. 276:F122–F128 (1999).

    CAS  Google Scholar 

  21. R. Lu, B. S. Chan, and V. L. Schuster. Cloning of the human kidney PAH transporter: narrow substrate specificity and regulation by protein kinase C. Am. J. Physiol. Renal Physiol. 276:F295–F303 (1999).

    CAS  Google Scholar 

  22. H. Tahara, M. Shono, H. Kusuhara, H. Kinoshita, E. Fuse, A. Takadate, M. Otagiri, and Y. Sugiyama. Molecular cloning and functional analysis of OAT1 and OAT3 from Cynomolgus monkey kidney. Pharm. Res. 22:647–660 (2005).

    PubMed  CAS  Google Scholar 

  23. Y. Hagos, A. Bahn, A. R. Asif, W. Krick, M. Sendler, and G. Burckhardt. Cloning of the pig renal organic anion transporter 1 (pOAT1). Biochimie 84:1221–1224 (2002).

    PubMed  CAS  Google Scholar 

  24. A. Bahn, M. Knabe, Y. Hagos, M. Rödiger, S. Godehardt, D. S. Graber-Neufeld, K. K. Evans, G. Burckhardt, and S. H. Wright. Interaction of the metal chelator 2,3-dimercapto-1-propane sulfonate with the rabbit multispecific organic anion transporter 1 (rbOAT1). Mol. Pharmacol. 62:1128–1136 (2002).

    PubMed  CAS  Google Scholar 

  25. R. L. George, X. Wu, Y.-J. Fei, F. H. Leibach, and V. Ganapathy. Molecular cloning and functional characterization of a polyspecific organic anion transporter from Caenorhabditis elegans. J. Pharmacol. Exp. Ther. 291:596–603 (1999).

    PubMed  CAS  Google Scholar 

  26. A. G. Aslamkhan, D. M. Thompson, J. L. Perry, K. Bleasby, N. A. Wolff, S. Barros, D. S. Miller, and J. B. Pritchard. The flounder organic anion transporter (fOAT) has sequence, function and substrate specificity similar to both mammalian Oats 1 and 3. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291:R1773–R1780 (2006).

    PubMed  CAS  Google Scholar 

  27. A. Bahn, D. Prawitt, D. Butler, G. Reid, T. Enklaar, N. A. Wolff, C. Ebbinghaus, A. Hillemann, H.-J. Schulten, B. Gunawan, L. Füzesi, B. Zabel, and G. Burckhardt. Genomic structure and in vivo expression of the human organic anion transporter 1 (hOAT1) gene. Biochem. Biophys. Res. Commun. 275:623–630 (2000).

    PubMed  CAS  Google Scholar 

  28. S. A. Eraly, B. A. Hamilton, and S. K. Nigam. Organic anion and cation transporters occur in pairs of similar and similarly expressed genes. Biochem. Biophys. Res. Commun. 300:333–342 (2003).

    PubMed  CAS  Google Scholar 

  29. A. Bahn, C. Ebbinghaus, D. Ebbinghaus, E. G. Ponimaskin, L. Fuzesi, G. Burckhardt, and Y. Hagos. Expression studies and functional characterization of renal human organic anion transporter 1 isoforms. Drug Metab. Dispos. 32:424–430 (2004).

    PubMed  CAS  Google Scholar 

  30. K. Tanaka, W. Xu, F. Zhou, and G. You. Role of glycosylation in the organic anion transporter OAT1. J. Biol. Chem. 279:14961–14966 (2004).

    PubMed  CAS  Google Scholar 

  31. N. A. Wolff, K. Thies, N. Kuhnke, G. Reid, B. Friedrich, F. Lang, and G. Burckhardt. Protein kinase C activation downregulates human organic anion transporter 1-mediated transport through carrier internalization. J. Am. Soc. Nephrol. 14:1959–1968 (2003).

    PubMed  CAS  Google Scholar 

  32. G. You, K. Kuze, R. A. Kohanski, K. Amsler, and S. Henderson. Regulation of mOAT-mediated organic anion transport by ocadaic acid and protein kinase C in LLC-PK1 cells. J. Biol. Chem. 275:10278–10284 (2000).

    PubMed  CAS  Google Scholar 

  33. N. A. Wolff, B. Grünwald, B. Friedrich, F. Lang, S. Godehardt, and G. Burckhardt. Cationic amino acids involved in dicarboxylate binding of the flounder renal organic anion transporter. J. Am. Soc. Nephrol. 12:2012–2018 (2001).

    PubMed  CAS  Google Scholar 

  34. H. Motohashi, Y. Sakurai, H. Saito, S. Masuda, Y. Urakami, M. Goto, A. Fukatsu, O. Ogawa, and K.-I. Inui. Gene expression levels and immunolocalization of organic ion transporters in human kidney. J. Am. Soc. Nephrol. 13:866–874 (2002).

    PubMed  CAS  Google Scholar 

  35. R. Kojima, T. Sekine, M. Kawachi, S. H. Cha, Y. Suzuki, and H. Endou. Immunolocalization of multispecific organic anion transporters, OAT1, OAT2, and OAT3, in rat kidney. J. Am. Soc. Nephrol. 13:848–857 (2002).

    PubMed  CAS  Google Scholar 

  36. M. Ljubojevic, C. M. Herak-Kramberger, Y. Hagos, A. Bahn, H. Endou, G. Burckhardt, and I. Sabolic. Rat renal cortical OAT1 and OAT3 exhibit gender differences determined by both androgen stimulation and estrogen inhibition. Am. J. Physiol. Renal Physiol. 287:F124–F138 (2004).

    PubMed  CAS  Google Scholar 

  37. A. Tojo, T. Sekine, N. Nakajima, M. Hosoyamada, Y. Kanai, K. Kimura, and H. Endou. Immunohistochemical localization of multispecific renal organic anion transporter 1 in rat kidney. J. Am. Soc. Nephrol. 10:464–471 (1999).

    PubMed  CAS  Google Scholar 

  38. A. Bahn, M. Ljubojevic, H. Lorenz, C. Schultz, E. Ghebremedhin, B. Ugele, I. Sabolic, G. Burckhardt, and Y. Hagos. Murine renal organic anion transporters mOAT1 and mOAT3 facilitate the transport of neuroactive tryptophan metabolites. Am. J. Physiol., Cell Physiol. 289:C1075–C1084 (2005).

    PubMed  CAS  Google Scholar 

  39. M. Aleboyeh, M. Takeda, M. L. Onozato, A. Tojo, R. Noshiro, H. Hasannejad, J. Inatomi, S. Narikawa, X.-L. Huang, S. Khamdang, N. Anzai, and H. Endou. Expression of human organic anion transporter in the choroid plexus and their interactions with neurotransmitter metabolites. J. Pharmacol. Sci. 93:430–436 (2003).

    Google Scholar 

  40. H. Kimura, M. Takeda, S. Narikawa, A. Enomoto, K. Ichida, and H. Endou. Human organic anion transporters and human organic cation transporters mediate renal transport of prostaglandins. J. Pharmacol. Exp. Ther. 301:293–298 (2002).

    PubMed  CAS  Google Scholar 

  41. Y. Uwai, M. Okuda, K. Takami, Y. Hashimoto, and K.-I. Inui. Functional characterization of the rat multispecific organic anion transporter OAT1 mediating basolateral uptake of anionic drugs in the kidney. FEBS Lett. 438:321–324 (1998).

    PubMed  CAS  Google Scholar 

  42. K. Ichida, M. Hosoyamada, H. Kimura, M. Takeda, Y. Utsunomiya, T. Hosoya, and H. Endou. Urate transport via human PAH transporter hOAT1 and its gene structure. Kidney Int. 63:143–155 (2003).

    PubMed  CAS  Google Scholar 

  43. E. Beéry, P. Middel, A. Bahn, H. S. Willenberg, Y. Hagos, H. Koepsell, S. R. Bornstein, G. A. Müller, G. Burckhardt, and J. Steffgen. Molecular evidence of organic ion transporters in the rat adrenal cortex with adrenocorticotropin-regulated zonal expression. Endocrinology 144:4519–4526 (2003).

    PubMed  Google Scholar 

  44. M. Hasegawa, H. Kusuhara, H. Endou, and Y. Sugiyama. Contribution of organic anion transporters to the renal uptake of anionic compounds and nucleoside derivatives in rat. J. Pharmacol. Exp. Ther. 305:1087–1097 (2003).

    PubMed  CAS  Google Scholar 

  45. M. Sugawara, T. Mochizuki, Y. Takekuma, and K. Miyazaki. Structure–activity relationship in the interactions of human organic anion transporter 1 with caffeine, theophylline, theobromine and their metabolites. Biochim. Biophys. Acta 1714:85–92 (2005).

    PubMed  CAS  Google Scholar 

  46. S. A. Eraly, V. Vallon, D. A. Vaughn, J. A. Gangoiti, K. Richter, M. Nagle, J. C. Monte, T. Rieg, D. V. Truong, J. M. Long, B. A. Barshop, G. Kaler, and S. K. Nigam. Decreased renal organic anion secretion and plasma accumulation of endogenous organic anions in OAT1 knockout mice. J. Biol. Chem. 281:5072–5083 (2006).

    PubMed  CAS  Google Scholar 

  47. E. Babu, M. Takeda, S. Narikawa, Y. Kobayashi, T. Yamamoto, S. H. Cha, T. Sekine, D. Sakthisekaran, and H. Endou. Human organic anion transporters mediate the transport of tetracycline. Jpn. J. Pharmacol. 88:69–76 (2002).

    PubMed  CAS  Google Scholar 

  48. M. Takeda, E. Babu, S. Narikawa, and H. Endou. Interaction of human organic anion transporters with various cephalosporin antibiotics. Eur. J. Pharmacol. 438:137–142 (2002).

    PubMed  CAS  Google Scholar 

  49. T. Cihlar and E. S. Ho. Fluorescence-based assay for the interaction of small molecules with the human renal organic anion transporter 1. Anal. Biochem. 283:49–55 (2000).

    PubMed  CAS  Google Scholar 

  50. M. Takeda, S. Khamdang, S. Narikawa, H. Kimura, Y. Kobayashi, T. Yamamoto, S. H. Cha, T. Sekine, and H. Endou. Human organic anion transporters and human organic cation transporters mediate renal antiviral transport. J. Pharmacol. Exp. Ther. 300:918–924 (2002).

    PubMed  CAS  Google Scholar 

  51. E. S. Ho, D. C. Lin, D. B. Mendel, and T. Cihlar. Cytotoxicity of antiviral nucleotides adefovir and cidofovir is induced by the expression of human renal organic anion transporter 1. J. Am. Soc. Nephrol. 11:383–393 (2000).

    PubMed  CAS  Google Scholar 

  52. T. Cihlar, D. C. Lin, J. B. Pritchard, M. D. Fuller, D. B. Mendel, and D. H. Sweet. The antiviral nucleotide analogs cidofovir and adefovir are novel substrates for human and rat renal organic anion transporter 1. Mol. Pharmacol. 56:570–580 (1999).

    PubMed  CAS  Google Scholar 

  53. K. Bleasby, L. A. Hall, J. L. Perry, H. W. Mohrenweiser, and J. B. Pritchard. Functional consequences of single nucleotide polymorphisms in the human organic anion transporter hOAT1 (SLC22A6). J. Pharmacol. Exp. Ther. 314:923–931 (2005).

    PubMed  CAS  Google Scholar 

  54. A. S. Mulato, E. S. Ho, and T. Cihlar. Nonsteroidal anti-inflammatory drugs efficiently reduce the transport and cytotoxicity of adefovir mediated by the human renal organic anion transporter 1. J. Pharmacol. Exp. Ther. 295:10–15 (2000).

    PubMed  CAS  Google Scholar 

  55. H. Tahara, H. Kusuhara, H. Endou, H. Koepsell, T. Imaoka, E. Fuse, and Y. Sugiyama. A species difference in the transport activities of H2 receptor antagonists by rat and human renal organic anion and cation transporters. J. Pharmacol. Exp. Ther. 315:337–345 (2005).

    PubMed  CAS  Google Scholar 

  56. B. C. Burckhardt, S. Brai, S. Wallis, W. Krick, N. A. Wolff, and G. Burckhardt. Transport of cimetidine by flounder and human renal organic anion transporter 1. Am. J. Physiol. Renal Physiol. 284:F503–F509 (2003).

    PubMed  CAS  Google Scholar 

  57. B. Feng, M. J. Dresser, Y. Shu, S. J. Johns, and K. M. Giacomini. Arginine 454 and lysine 370 are essential for the anion specificity of the organic anion transporter, rOAT3. Biochemistry 40:5511–5520 (2001).

    PubMed  CAS  Google Scholar 

  58. S. H. Cha, T. Sekine, J.-I. Fukushima, Y. Kanai, Y. Kobayashi, T. Goya, and H. Endou. Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Mol. Pharmacol. 59:1277–1286 (2001).

    PubMed  CAS  Google Scholar 

  59. X. Zhang, C. E. Groves, A. Bahn, W. M. Barendt, M. D. Prado, M. Rödiger, V. Chatsudthipong, G. Burckhardt, and S. H. Wright. Relative contribution of OAT and OCT transporters to organic electrolyte transport in rabbit proximal tubule. Am. J. Physiol. Renal Physiol. 287:F999–F1010 (2004).

    PubMed  CAS  Google Scholar 

  60. H. Hasannejad, M. Takeda, K. Taki, S. H. Jung, E. Babu, P. Jutabha, S. Khamdang, M. Aleboyeh, M. L. Onodera, A. Tojo, A. Enomoto, N. Anzai, S. Narikawa, X.-L. Huang, T. Niwa, and H. Endou. Interactions of human organic anion transporters with diuretics. J. Pharmacol. Exp. Ther. 308:1021–1029 (2003).

    PubMed  Google Scholar 

  61. N. Apiwattanakul, T. Sekine, A. Chairoungdua, Y. Kanai, N. Nakajima, S. Sophasan, and H. Endou. Transport properties of nonsteroidal anti-inflammatory drugs by organic anion transporter 1 expressed in Xenopus laevis oocytes. Mol. Pharmacol. 55:847–854 (1999).

    PubMed  CAS  Google Scholar 

  62. S. Khamdang, M. Takeda, R. Noshiro, S. Narikawa, A. Enomoto, N. Anzai, P. Piyachaturawat, and H. Endou. Interactions of human organic anion transporters and human organic cation transporters with nonsteroidal anti-inflammatory drugs. J. Pharmacol. Exp. Ther. 303:534–539 (2002).

    PubMed  CAS  Google Scholar 

  63. Y. Uwai, R. Taniguchi, H. Motohashi, H. Saito, M. Okuda, and K.-I. Inui. Methotrexate–loxoprofen interaction: involvement of human organic anion transporters hOAT1 and hOAT3. Drug Metab. Dispos. 19:369–374 (2004).

    CAS  Google Scholar 

  64. K. Y. Jung, M. Takeda, D. K. Kim, A. Tojo, S. Narikawa, B. S. Yoo, M. Hosoyamada, S. H. Cha, and T. Sekine. Characterization of ochratoxin A transport by human organic anion transporters. Life Sci. 69:2123–2135 (2001).

    PubMed  CAS  Google Scholar 

  65. M. Takeda, R. Noshiro, M. L. Onozato, A. Tojo, H. Hasannejad, X.-L. Huang, S. Narikawa, and H. Endou. Evidence for a role of human organic anion transporters in the muscular side effects of HMG-CoA reductase inhibitors. Eur. J. Pharmacol. 483:133–138 (2004).

    PubMed  CAS  Google Scholar 

  66. M. Takeda, S. Narikawa, M. Hosoyamada, S. H. Cha, T. Sekine, and H. Endou. Characterization of organic anion transport inhibitors using cells stably expressing human organic anion transporters, Eur. J. Pharmacol. 419:113–120 (2001).

    PubMed  CAS  Google Scholar 

  67. S. Khamdang, M. Takeda, M. Shimoda, R. Noshiro, S. Narikawa, X.-L. Huang, A. Enomoto, P. Piyachaturawat, and H. Endou. Interaction of human- and rat-organic anion transporters with pravastatin and cimetidine. J. Pharmacol. Sci. 94:197–202 (2004).

    PubMed  CAS  Google Scholar 

  68. T. Hashimoto, S. Narikawa, X.-L. Huang, T. Minematsu, T. Usui, H. Kamimura, and H. Endou. Characterization of the renal tubular transport of zonampanel, a novel alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor antagonist, by human organic anion transporters. Drug Metab. Dispos. 32:1096–1102 (2004).

    PubMed  CAS  Google Scholar 

  69. G. D. Simonson, A. C. Vincent, K. J. Roberg, Y. Huang, and V. Iwanij. Molecular cloning and characterization of a novel liver-specific transport protein, J. Cell Sci. 107:1065–1072 (1994).

    Google Scholar 

  70. T. Sekine, S. H. Cha, M. Tsuda, N. Apiwattanakul, N. Nakajima, Y. Kanai, and H. Endou. Identification of multispecific organic anion transporter 2 expressed predominantly in the liver. FEBS Lett. 429:179–182 (1998).

    PubMed  CAS  Google Scholar 

  71. W. Sun, R. R. Wu, P. D. van Poelje, and M. D. Erion. Isolation of a family of organic anion transporters from human liver and kidney. Biochem. Biophys. Res. Commun. 283:417–422 (2001).

    PubMed  CAS  Google Scholar 

  72. Y. Kobayashi, N. Ohshiro, A. Shibusawa, T. Sasaki, S. Tokuyama, T. Sekine, H. Endou, and T. Yamamoto. Isolation, characterization and differential gene expression of multispecific organic anion transporter 2 in mice. Mol. Pharmacol. 62:7–14 (2002).

    PubMed  CAS  Google Scholar 

  73. A. Enomoto, M. Takeda, M. Shimoda, S. Narikawa, Y. Kobayashi, Y. Kobayashi, T. Yamamoto, T. Sekine, S. H. Cha, T. Niwa, and H. Endou. Interaction of human organic anion transporters 2 and 4 with organic anion transport inhibitors. J. Pharmacol. Exp. Ther. 301:797–802 (2002).

    PubMed  CAS  Google Scholar 

  74. Y. Kobayashi, M. Ohbayashi, N. Kohyama, and T. Yamamoto. Mouse organic anion transporter 2 and 3 (mOAT2/3[Slc22a7/8]) mediated the renal transport of bumetanide. Eur. J. Pharmacol. 524:44–48 (2005).

    PubMed  CAS  Google Scholar 

  75. M. Ljubojevic, D. Balen, D. Breljak, M. Kusan, N. Anzai, A. Bahn, G. Burckhardt, and I. Sabolic. Renal expression of organic anion transporter OAT2 in rats and mice is regulated by sex hormones. Am. J. Physiol. Renal Physiol. Aug 1 (2006, Epub ahead of print).

  76. Y. Kobayashi, N. Ohshiro, R. Sakai, M. Ohbayashi, N. Kohyama, and T. Yamamoto. Transport mechanism and substrate specificity of human organic anion transporter 2 (hOAT2[SLC22A7]). J. Pharm. Pharmacol. 57:573–578 (2005).

    PubMed  CAS  Google Scholar 

  77. N. Morita, H. Kusuhara, T. Sekine, H. Endou, and Y. Sugiyama. Functional characterization of rat organic anion transporter 2 in LLC-PK1 cells. J. Pharmacol. Exp. Ther. 298:1179–1184 (2001).

    PubMed  CAS  Google Scholar 

  78. Y. Kobayashi, R. Sakai, N. Ohshiro, M. Ohbayashi, N. Kohyama, and T. Yamamoto. Possible involvement of organic anion transporter 2 on the interaction of theophylline with erythromycin in the human liver. Drug Metab. Dispos. 33:619–622 (2005).

    PubMed  CAS  Google Scholar 

  79. S. Khamdang, M. Takeda, E. Babu, R. Noshiro, M. L. Onozato, A. Tojo, A. Enomoto, X.-L. Huang, S. Narikawa, N. Anzai, P. Piyachaturawat, and H. Endou. Interaction of human and rat organic anion transporter 2 with various cephalosporin antibiotics. Eur. J. Pharmacol. 465:1–7 (2003).

    PubMed  CAS  Google Scholar 

  80. J. E. Race, S. M. Grassl, W. J. Williams, and E. J. Holtzman. Molecular cloning and characterization of two novel human renal organic anion transporters (hOAT1 and hOAT3). Biochem. Biophys. Res. Commun. 255:508–514 (1999).

    PubMed  CAS  Google Scholar 

  81. Y. Hagos, I. M. Braun, W. Krick, G. Burckhardt, and A. Bahn. Functional expression of pig renal organic anion transporter 3 (pOAT3). Biochimie 87:421–424 (2005).

    PubMed  CAS  Google Scholar 

  82. H. Kusuhara, T. Sekine, N. Utsunomiya-Tate, M. Tsuda, R. Kojima, S. H. Cha, Y. Sugiyama, Y. Kanai, and H. Endou. Molecular cloning and characterization of a new multispecific organic anion transporter from rat brain. J. Biol. Chem. 274:13675–13680 (1999).

    PubMed  CAS  Google Scholar 

  83. K. P. Brady, H. Dushkin, D. Förnzler, T. Koike, F. Magner, H. Her, S. Gullans, G. V. Segre, R. M. Green, and D. R. Beier. A novel putative transporter maps top the osteosclerosis (oc) mutation and is not expressed in the oc mutant mouse. Genomics 56:254–261 (1999).

    PubMed  CAS  Google Scholar 

  84. G. Burckhardt, and N. A. Wolff. Structure of renal organic anion and cation transporters. Am. J. Physiol. Renal Physiol. 278:F853–F866 (2000).

    PubMed  CAS  Google Scholar 

  85. M. Takeda, T. Sekine, and H. Endou. Regulation by protein kinase C of organic anion transport driven by rat organic anion transporter 3 (rOAT3). Life Sci. 67:1087–1093 (2000).

    PubMed  CAS  Google Scholar 

  86. B. Feng, Y. Shu, and K. M. Giacomini. Role of aromatic transmembrane residues of the organic anion transporter, rOAT3, in substrate recognition. Biochemistry 41:8941–8947 (2002).

    PubMed  CAS  Google Scholar 

  87. A. Enomoto, M. Takeda, A. Tojo, T. Sekine, S. H. Cha, S. Khamdang, F. Takayama, I. Aoyama, S. Nakamura, H. Endou, and T. Niwa. Role of organic anion transporters in the tubular transport of indoxyl sulfate and the induction of its nephrotoxicity. J. Am. Soc. Nephrol. 13:1711–1720 (2002).

    PubMed  CAS  Google Scholar 

  88. M. Hasegawa, H. Kusuhara, D. Sugiyama, K. Ito, S. Ueda, H. Endou, and Y. Sugiyama. Functional involvement of rat organic anion transporter 3 (rOAT3; Slc22a8) in the uptake of organic anions. J. Pharmacol. Exp. Ther. 300:746–753 (2002).

    PubMed  CAS  Google Scholar 

  89. R. Kikuchi, H. Kusuhara, D. Sugiyama, and Y. Sugiyama. Contribution of organic anion transporter 3 (Slc22a8) to the elimination of p-aminohippuric acid and benzylpenicillin across the blood–brain barrier. J. Pharmacol. Exp. Ther. 306:51–58 (2003).

    PubMed  CAS  Google Scholar 

  90. N. Bakhiya, A. Bahn, G. Burckhardt, and N. A. Wolff. Human organic anion transporter 3 (hOAT3) can operate as an exchanger accepting urate as a substrate. Cell. Physiol. Biochem. 13:249–256 (2003).

    PubMed  CAS  Google Scholar 

  91. D. H. Sweet, L. M. S. Chan, R. Walden, X.-P. Yang, D. S. Miller, and J. B. Pritchard. Organic anion transporter 3 [Slc22a8] is a dicarboxylate exchanger indirectly coupled to the Na+ gradient. Am. J. Physiol. Renal Physiol. 284:F763–F769 (2003).

    PubMed  CAS  Google Scholar 

  92. A. R. Asif, J. Steffgen, M. Metten, R. W. Grunewald, G. A. Müller, A. Bahn, G. Burckhardt, and Y. Hagos. Presence of organic anion transporters 3 (OAT3) and 4 (OAT4) in human adrenocortical cells. Pflügers Arch.—Eur. J. Physiol. 450:88–95 (2005).

    CAS  Google Scholar 

  93. M. Takeda, M. Hosoyamada, S. H. Cha, T. Sekine, and H. Endou. Hydrogen peroxide downregulates human organic anion transporters in the basolateral membrane of the proximal tubule. Life Sci. 68:679–687 (2000).

    PubMed  CAS  Google Scholar 

  94. C. Srimaroeng, V. Chatsudthipong, A. G. Aslamkhan, and J. B. Pritchard. Transport of the natural sweetener stevioside and its aglycone steviol by human organic anion transporter (hOAT1; SLC22A6) and hOAT3 (SLC22A8). J. Pharmacol. Exp. Ther. 313:621–628 (2005).

    PubMed  CAS  Google Scholar 

  95. S. Mori, H. Takanaga, S. Ohtsuki, T. Deguchi, Y.-S. Kang, K.-I. Hosoya, and T. Terasaki. Rat organic anion transporter 3 (rOAT3) is responsible for brain-to-blood efflux of homovanillic acid at the abluminal membrane of brain capillary endothelial cells. J. Cereb. Blood Flow Metab. 23:432–440 (2003).

    PubMed  CAS  Google Scholar 

  96. D. H. Sweet, D. S. Miller, J. B. Pritchard, Y. Fujiwara, D. R. Beier, and S. K. Nigam. Impaired organic anion transport in kidney and choroid plexus of organic anion transporter 3 (Oat3 (Slc22a8)) knockout mice. J. Biol. Chem. 277:26934–26943 (2002).

    PubMed  CAS  Google Scholar 

  97. Y. Nagata, H. Kusuhara, H. Endou, and Y. Sugiyama. Expression and functional characterization of rat organic anion transporter 3 (rOAT3) in the choroid plexus. Mol. Pharmacol. 61:982–988 (2002).

    PubMed  CAS  Google Scholar 

  98. S. Ohtsuki, T. Kikkawa, S. Mori, S. Hori, H. Takanaga, M. Otagiri, and T. Terasaki. Mouse reduced in osteosclerosis transporter functions as an organic anion transporter 3 and is localized at abluminal membrane of blood–brain barrier. J. Pharmacol. Exp. Ther. 309:1273–1281 (2004).

    PubMed  CAS  Google Scholar 

  99. H. Motohashi, Y. Uwai, K. Hiramoto, M. Okuda, and K.-I. Inui. Different transport properties between famotidine and cimetidine by human renal organic ion transporters (SLC22A). Eur. J. Pharmacol. 503:25–30 (2004).

    PubMed  CAS  Google Scholar 

  100. H. Tahara, H. Kusuhara, M. Chida, E. Fuse, and Y. Sugiyama. Is the monkey an appropriate animal model to examine drug–drug interactions involving renal clearance? Effect of probenecid on the renal elminination of H2 receptor antagonists. J. Pharmacol. Exp. Ther. 316:1187–1194 (2006).

    PubMed  CAS  Google Scholar 

  101. S. H. Cha, T. Sekine, H. Kusuhara, E. Yu, J. Y. Kim, D. K. Kim, Y. Sugiyama, Y. Kanai, and H. Endou. Molecular cloning and characterization of multispecific organic anion transporter 4 expressed in the placenta. J. Biol. Chem. 275:4507–4512 (2000).

    PubMed  CAS  Google Scholar 

  102. F. Zhou, W. Xu, M. Hong, Z. Pan, P. J. Sinko, J. Ma, and G. You. The role of N-linked glycosylation in protein folding, membrane targeting, and substrate binding of human organic anion transporter OAT4. Mol. Pharmacol. 67:868–876 (2005).

    PubMed  CAS  Google Scholar 

  103. F. Zhou, K. Tanaka, Z. Pan, J. Ma, and G. You. The role of glycine residues in the function of human organic anion transporter 4. Mol. Pharmacol. 65:1141–1147 (2004).

    PubMed  CAS  Google Scholar 

  104. F. Zhou, Z. Pan, J. Ma, and G. You. Mutational analysis of histidine residues in human organic anion transporter 4 (hOAT4). Biochem. J. 384:87–92 (2004).

    PubMed  CAS  Google Scholar 

  105. E. Babu, M. Takeda, S. Narikawa, Y. Kobayashi, A. Enomoto, A. Tojo, S. H. Cha, T. Sekine, D. Sakthisekaran, and H. Endou. Role of human organic anion transporter 4 in the transport of ochratoxin A. Biochim. Biophys. Acta 1590:64–75 (2002).

    PubMed  CAS  Google Scholar 

  106. H. Miyazaki, N. Anzai, S. Ekaratanawong, T. Sakata, H. J. Shin, P. Jutabha, T. Hirata, X. He, H. Nonoguchi, K. Tomita, Y. Kanai, and H. Endou. Modulation of renal apical organic anion transporter 4 function by two PDZ domain-containing proteins. J. Am. Soc. Nephrol. 16:3498–3506 (2005).

    PubMed  CAS  Google Scholar 

  107. Y. Kato, K. Yoshida, C. Watanabe, Y. Sai, and A. Tsuji. Screening of the interaction between xenobiotic transporters and PDZ proteins. Pharm. Res. 21:1886–1894 (2004).

    PubMed  CAS  Google Scholar 

  108. B. Ugele, M. V. St-Pierre, M. Pihusch, A. Bahn, and P. Hantschmann. Characterization and identification of steroid sulfate transporters in human placenta. Am. J. Physiol. Endocrinol. Metab. 284:E390–E398 (2003).

    PubMed  CAS  Google Scholar 

  109. N. Anzai, P. Jutabha, A. Enomoto, H. Yokoyama, H. Nonoguchi, T. Hirata, K. Shiraya, X. He, S. H. Cha, M. Takeda, H. Miyazaki, T. Sakata, K. Tomita, T. Igarashi, Y. Kanai, and H. Endou. Functional characterization of rat organic anion transporter 5 (Slc22a19) at the apical membrane of renal proximal tubules. J. Pharmacol. Exp. Ther. 315:534–544 (2005).

    PubMed  CAS  Google Scholar 

  110. T. Iwanaga, D. Kobayashi, M. Hirayama, T. Maeda, and I. Tamai. Involvement of uric acid transporter in increased renal clearance of the xanthine oxidase inhibitor oxypurinol inducd by a uricosuric agent, benzbromarone. Drug Metab. Dispos. 33:1791–1795 (2005).

    PubMed  CAS  Google Scholar 

  111. S. Ekaratanawong, N. Anzai, P. Jutabha, H. Miyazaki, R. Noshiro, M. Takeda, Y. Kanai, S. Sophasan, and H. Endou. Human organic anion transporter 4 is a renal apical organic anion/dicarboxylate exchanger in the proximal tubules. J. Pharmacol. Sci. 94:297–304 (2004).

    PubMed  CAS  Google Scholar 

  112. Y. Hagos, D. Stein, B. Ugele, G. Burckhardt, and A. Bahn. Human renal organic-anion-transporter 4 (hOAT4) operates as an asymmetric urate transporter. J. Am. Soc. Nephrol. (2007, in press).

  113. M. Takeda, S. Khamdang, S. Narikawa, H. Kimura, M. Hosoyamada, S. H. Cha, T. Sekine, and H. Endou. Characterization of methotrexate transport and its drug interactions with human organic anion transporters. J. Pharmacol. Exp. Ther. 302:666–671 (2002).

    PubMed  CAS  Google Scholar 

  114. G. L. Youngblood, and D. H. Sweet. Identification and functional assessment of the novel murine organic anion transporter Oat5 (Slc22a19) expressed in kidney. Am. J. Physiol. Renal Physiol. 287:F236–F244 (2004).

    PubMed  CAS  Google Scholar 

  115. A. Enomoto, H. Kimura, A. Chairoungdua, Y. Shigeta, P. Jutabha, S. H. Cha, M. Hosoyamada, M. Takeda, T. Sekine, T. Igarashi, H. Matsuo, Y. Kikuchi, T. Oda, K. Ichida, T. Hosoya, K. Shimotaka, T. Niwa, Y. Kanai, and H. Endou. Molecular identification of a renal urate-anion exchanger that regulates blood urate levels. Nature 417:447–452 (2002).

    PubMed  CAS  Google Scholar 

  116. K. Mori, Y. Ogawa, K. Ebihara, T. Aoki, N. Tamura, A. Sugawara, T. Kuwahara, S. Ozaki, M. Mukoyama, K. Tashiro, I. Tanaka, and K. Nakao. Kidney-specific expression of a novel mouse organic cation transporter-like protein. FEBS Lett. 417:371–374 (1997).

    PubMed  CAS  Google Scholar 

  117. M. Hosoyamada, K. Ichida, A. Enomoto, T. Hosoya, and H. Endou. Function and localization of urate transporter 1 in mouse kidney. J. Am. Soc. Nephrol. 15:261–268 (2004).

    PubMed  CAS  Google Scholar 

  118. N. Anzai, H. Miyazaki, R. Noshiro, S. Khamdang, A. Chairoungdua, H. J. Shin, A. Enomoto, S. Sakamoto, T. Hirata, K. Tomita, Y. Kanai, and H. Endou. The multivalent PDZ domain-containing protein PDZK1 regulates transport activity of renal urate-anion exchanger URAT1 via its C terminus. J. Biol. Chem. 279:45942–45950 (2004).

    PubMed  CAS  Google Scholar 

  119. M. A. Hediger, R. J. Johnson, H. Miyazaki, and H. Endou. Molecular physiology of urate transport. Physiology 20:125–133 (2005).

    PubMed  CAS  Google Scholar 

  120. E. Gopal, Y.-J. Fei, M. Sugawara, S. Miyauchi, L. Zhuang, P. Martin, S. B. Smith, P. D. Prasad, and V. Ganapathy. Expression of slc5a8 in kidney and its role in Na+-coupled transport of lactate. J. Biol. Chem. 279:44522–44532 (2004).

    PubMed  CAS  Google Scholar 

  121. H. Wang, Y.-J. Fei, R. Kekuda, T. L. Yang-Feng, L. D. Devoe, F. H. Leibach, P. D. Prasad, and V. Ganapathy. Structure, function, and genomic organization of human Na+-dependent high-affinity dicarboxylate transporter. Am. J. Physiol., Cell Physiol. 278:C1019–C1030 (2000).

    PubMed  CAS  Google Scholar 

  122. X. Yao, and A. M. Pajor. The transport properties of the human renal Na+-dicarboxylate cotransporter under voltage-clamp conditions. Am. J. Physiol. Renal Physiol. 279:F54–F64 (2000).

    PubMed  CAS  Google Scholar 

  123. M. Hong, F. Zhou, and G. You. Critical amino acid residues in transmembrane domain 1 of the human organic anion transporter OAT1. J. Biol. Chem. 279:31478–31482 (2004).

    PubMed  CAS  Google Scholar 

  124. T. Imaoka, H. Kusuhara, S. Adachi-Akahane, M. Hasegawa, N. Morita, H. Endou, and Y. Sugiyama. The renal-specific transporter mediates facilitative transport of organic anions at the brush border membrane of mouse renal tubules. J. Am. Soc. Nephrol. 15:2012–2022 (2004).

    PubMed  CAS  Google Scholar 

  125. T. Deguchi, H. Kusuhara, A. Takadate, H. Endou, M. Otagiri, and Y. Sugiyama. Characterization of uremic toxin transport by organic anion transporters in the kidney. Kidney Int. 65:162–174 (2004).

    PubMed  CAS  Google Scholar 

  126. K. H. Beyer, H. F. Russo, E. K. Tillson, A. K. Miller, W. F. Verwey, and S. R. Gass. ‘Benemid’, p-(di-n-propylsulfamyl)-benzoic acid: its renal affinity and its elimination. Am. J. Physiol. 166:625–640 (1951).

    PubMed  CAS  Google Scholar 

  127. M. Takeda, E. Babu, S. Narikawa, and H. Endou. Corrigendum to “Interaction of human organic anion transporters with various cephalosporin antibiotics”. Eur. J. Pharmacol. 450:111 (2002).

    CAS  Google Scholar 

  128. M. Barza. The nephrotoxicity of cephalosporins: an overview. J. Infect. Dis. 137:S60–S73 (1978).

    PubMed  Google Scholar 

  129. B. M. Tune. Nephrotoxicity of beta-lactam antibiotics: mechanisms and strategies for prevention. Pediatr. Nephrol. 11:768–772 (1997).

    PubMed  CAS  Google Scholar 

  130. J. D. Schuetz, M. C. Connelly, D. Sun, S. G. Paibir, P. M. Flynn, R. V. Srivinas, A. Kumar, and A. Fridland. MRP4: a previously unidentified factor in resistance to nucleoside-based antiviral drugs. Nat. Med. 5:1048–1051 (1999).

    PubMed  CAS  Google Scholar 

  131. R. A. M. H. Van Aubel, P. H. E. Smeets, J. G. P. Peters, R. J. M. Bindels, and F. G. M. Russel. The MRP4/ABCC4 gene encodes a novel apical organic anion transporter in human kidney proximal tubules: putative efflux pump for urinary cAMP and cGMP. J. Am. Soc. Nephrol. 13:595–603 (2002).

    PubMed  Google Scholar 

  132. D. Choudhury, and Z. Ahmed. Drug-associated renal dysfunction and injury. Nat. Clin. Pract. Nephrol. 2:80–91 (2006).

    PubMed  CAS  Google Scholar 

  133. S. A. Lacy, M. J. M. Hitchcock, W. A. Lee, P. Tellier, and K. C. Cundy. Effect of probenecid coadministration on the chronic toxicity and pharmacokinetics of intravenous cidofovir in Cynomolgus monkey. Toxicol. Sci. 44:97–106 (1998).

    PubMed  CAS  Google Scholar 

  134. R. Yarchoan, H. Mitsuya, C. E. Myers, and S. Broder. Clinical pharmacology of 3′-azido-2′,3′-dideoxythymidine (zidovudine) and related dideoxynucleotides. N. Engl. J. Med. 321:726–738 (1989).

    Article  PubMed  CAS  Google Scholar 

  135. O. L. Laskin, P. De Miranda, D. H. King, D. A. Page, J. A. Longstreth, L. Rocco, and P. S. Lietman. Effects of probenecid on the pharmacokinetics and elimination of acyclovir in humans. Antimicrob. Agents Chemother. 21:804–807 (1982).

    PubMed  CAS  Google Scholar 

  136. Y. Nozaki, H. Kusuhara, H. Endou, and Y. Sugiyama. Quantitative evaluation of the drug–drug interactions between methotrexate and nonsteroidal anti-inflammatory drugs in the renal uptake process based on the contribution of organic anion transporter and reduced folate transporter. J. Pharmacol. Exp. Ther. 309:226–234 (2004).

    PubMed  CAS  Google Scholar 

  137. M. Boll, M. Herget, M. Wagener, W. M. Weber, D. Markovich, J. Biber, W. Clauss, H. Murer, and H. Daniel. Expression cloning and functional characterization of the kidney cortex high-affinity proton-coupled peptide transporter. Proc. Natl. Acad. Sci. U. S. A. 93:284–289 (1996).

    PubMed  CAS  Google Scholar 

  138. H. Sun, L. Frassetto, and L. Z. Benet. Effects of renal failure on drug transport and metabolism. Pharmacol. Ther. 109:1–11 (2006).

    PubMed  CAS  Google Scholar 

  139. A. Enomoto, M. Takeda, K. Taki, F. Takayama, R. Noshiro, T. Niwa, and H. Endou. Interactions of human organic anion as well as cation transporters with indoxyl sulfate. Eur. J. Pharmacol. 466:13–20 (2003).

    PubMed  CAS  Google Scholar 

  140. K. Motojima, A. Hosokawa, H. Yamato, T. Muraki, and T. Yoshioka. Uraemic toxins induce proximal tubular injury via organic anion transporter 1-mediated uptake. Br. J. Pharmacol. 135:555–563 (2002).

    PubMed  CAS  Google Scholar 

  141. M. Motojima, A. Hosokawa, H. Yamato, T. Muraki, and T. Yoshioka. Uremic toxins of organic anions up-regualte PAI-1 expression by induction of NF-kB and free radical in proximal tubule cells. Kidney Int. 63:1671–1680 (2003).

    PubMed  CAS  Google Scholar 

  142. J. M. Pombrio, A. Giangreco, L. Li, M. F. Wempe, M. W. Anders, D. H. Sweet, J. B. Pritchard, and N. Ballatori. Mercapturic acids (N-acetylcysteine S-conjugates) as endogenous substrates for the renal organic anion transporter-1. Mol. Pharmacol. 60:1091–1099 (2001).

    PubMed  CAS  Google Scholar 

  143. C. E. Groves, L. Muñoz, A. Bahn, G. Burckhardt, and S. H. Wright. Interaction of cysteine conjugates with human and rabbit organic anion transporter 1. J. Pharmacol. Exp. Ther. 304:560–566 (2003).

    PubMed  CAS  Google Scholar 

  144. A. S. Aslamkhan, Y.-H. Han, X.-P. Yang, R. K. Zalups, and J. B. Pritchard. Human renal organic anion transporter 1-dependent uptake and toxicity of mercuric-thiol conjugates in Madin–Darby canine kidney cells. Mol. Pharmacol. 63:590–596 (2003).

    PubMed  CAS  Google Scholar 

  145. A. S. Koh, T. A. Simmons-Willis, J. B. Pritchard, S. M. Grassl, and N. Ballatori. Identification of a mechanism by which the methylmercury antidotes N-acetylcysteine and dimercaptopropanesulfonate enhance urinary metal excretion: transport by the renal organic anion transporter-1. Mol. Pharmacol. 62:921–926 (2002).

    PubMed  CAS  Google Scholar 

  146. R. K. Zalups, and S. Ahmad. Transport of N-acetylcysteine S-conjugates of methylmercury in Madin–Darbi canine kidney cells stably transfected with human isoform of organic anion transporter 1. J. Pharmacol. Exp. Ther. 314:1158–1168 (2005).

    PubMed  CAS  Google Scholar 

  147. R. K. Zalups, A. Aslamkhan, and S. Ahmad. Human organic anion transporter 1 mediates cellular uptake of cysteine-S conjugates of inorganic mercury. Kidney Int. 66:251–261 (2004).

    PubMed  CAS  Google Scholar 

  148. R. K. Zalups, and S. Ahmad. Handling of the homocysteine S-conjugate of methylmercury by renal epithelial cells: role of organic anion transporter 1 and amino acid transporters. J. Pharmacol. Exp. Ther. 315:896–904 (2005).

    PubMed  CAS  Google Scholar 

  149. R. K. Zalups, and S. Ahmad. Homocysteine and the renal epithelial transport and toxicity of inorganic mercury: role of basolateral transporter organic anion transporter 1. J. Am. Soc. Nephrol. 15:2023–2031 (2004).

    PubMed  CAS  Google Scholar 

  150. R. K. Zalups, and L. H. Lash. Advances in understanding the renal transport and toxicity of mercury. J. Toxicol. Environ. Health 42:1–44 (1994).

    Article  PubMed  CAS  Google Scholar 

  151. F. Islinger, M. Gekle, and S. H. Wright. Interaction of 2,3-dimercapto-1-propane sulfonate with the human organic anion transporter hOAT1. J. Pharmacol. Exp. Ther. 299:741–747 (2001).

    PubMed  CAS  Google Scholar 

  152. A. Lungkaphin, V. Chatsudthipong, K. K. Evans, C. E. Groves, S. H. Wright, and W. H. Dantzler. Interaction of the metal chelator DMPS with OAT1 and OAT3 in intact isolated rabbit renal proximal tubules. Am. J. Physiol. Renal Physiol. 286:F68–F76 (2003).

    PubMed  Google Scholar 

  153. B. C. Burckhardt, B. Drinkuth, C. Menzel, A. König, J. Steffgen, S. H. Wright, and G. Burckhardt. The renal Na+-dependent dicarboxylate transporter, NaDC-3, translocates dimethyl- and disulfhydryl compounds and contributes to renal heavy metal detoxification. J. Am. Soc. Nephrol. 13:2628–2638 (2002).

    PubMed  CAS  Google Scholar 

  154. N. Bakhiya, M. Stephani, A. Bahn, B. Ugele, A. Seidel, G. Burckhardt, and H. Glatt. Uptake of chemically reactive, DNA-damaging sulfuric acid esters into renal cells by human organic anion transporters. J. Am. Soc. Nephrol. 17:1414–1421 (2006).

    PubMed  CAS  Google Scholar 

  155. S. C. N. Buist, N. J. Cherrington, S. Choudhuri, D. P. Hartley, and C. D. Klaassen. Gender-specific and developmental influences on the expression of rat organic anion transporters. J. Pharmacol. Exp. Ther. 301:145–151 (2002).

    PubMed  CAS  Google Scholar 

  156. S. C. N. Buist, and C. D. Klaassen. Rat and mouse differences in gender-predominant expression of organic anion transporter (OAT1-3, SLC22A6-8) mRNA levels. Drug Metab. Dispos. 32:620–625 (2004).

    PubMed  CAS  Google Scholar 

  157. C. E. Groves, W. B. Suhre, N. J. Cherrington, and S. H. Wright. Sex differences in the mRNA, protein, and functional expression of organic anion transporter (Oat) 1, Oat3, and organic cation transporter (Oct) 2 in rabbit renal proximal tubules. J. Pharmacol. Exp. Ther. 316:743–752 (2006).

    PubMed  CAS  Google Scholar 

  158. T. Li, J. R. Walsh, F. K. Ghishan, and L. Bai. Molecular cloning and characterization of a human urate transporter (hURAT1) gene promoter. Biochim. Biophys. Acta 1681:53–58 (2004).

    PubMed  CAS  Google Scholar 

  159. G. Xu, V. Bhatnagar, G. Wen, B. A. Hamilton, S. A. Eraly, and S. K. Nigam. Analyses of coding region polymorphisms in apical and basolateral human organic anion transporter (OAT) genes [OAT1 (NKT), OAT2, OAT3, OAT4, URAT1 (RST)]. Kidney Int. 68:1491–1499 (2005).

    PubMed  CAS  Google Scholar 

  160. T. Fujita, C. Brown, E. J. Carlson, T. Taylor, M. De la Cruz, S. J. Johns, D. Stryke, M. Kawamoto, K. Fujita, R. Castro, C.-W. Chen, E. T. Lin, C. M. Brett, E. G. Burchard, T. E. Ferrin, C. C. Huang, M. K. Leabman, and K. M. Giacomini. Functional analysis of polymorphisms in the organic anion transporter, SLC22A6 (OAT1). Pharmacogenet. Genomics 15:201–209 (2005).

    PubMed  CAS  Google Scholar 

  161. T. Sakata, N. Anzai, H. J. Shin, R. Noshiro, T. Hirata, H. Yokoyama, Y. Kanai, and H. Endou. Novel single nucleotide polymorphisms of organic cation transporter 1 (SLC22A1) affecting transport functions. Biochem. Biophys. Res. Commun. 313:789–793 (2004).

    PubMed  CAS  Google Scholar 

  162. A. R. Erdman, L. M. Mangravite, T. J. Urban, L. L. Lagpacan, R. A. Castro, M. De la Cruz, W. Chan, C. C. Huang, S. J. Johns, M. Kawamoto, D. Stryke, T. R. Taylor, E. J. Carlson, T. E. Ferrin, C. M. Brett, E. G. Burchard, and K. M. Giacomini. The human organic anion transporter 3 (OAT3; SLC22A8): genetic variation and functional genomics. Am. J. Physiol. Renal Physiol. 290:905–912 (2005).

    Google Scholar 

  163. H. I. Cheong, J. H. Kang, J. H. Lee, I. S. Ha, S. Kim, F. Komoda, T. Sekine, T. Igarashi, and Y. Choi. Mutational analysis of idiopathic renal hypouricemia. Pediatr. Nephrol. 20:886–890 (2005).

    PubMed  Google Scholar 

  164. I. Ishikawa, M. Nakagawa, S. Hayama, S. Yoshida, and T. Date. Acute renal failure with severe loin pain and patchy renal ischaemia after anaerobic exercise (ALPE) (exercise-induced acute renal failure) in a father and child with URAT1 mutations beyond the W258X mutation. Nephrol. Dial. Transplant. 20:2015 (2005).

    Google Scholar 

  165. A. Komatsuda, K. Iwamoto, H. Wakui, K. Sawada, and A. Yamaguchi. Analysis of mutations in the urate transporter 1 (URAT1) gene of Japanese patients with hypouricemia in northern Japan and review of the literature. Ren. Fail. 28:223–227 (2006).

    PubMed  CAS  Google Scholar 

  166. K. Ichida, M. Hosoyamada, I. Hisatome, A. Enomoto, M. Hikita, H. Endou, and T. Hosoya. Clinical and molecular analysis of patients with renal hypouricemia in Japan—influence of URAT1 gene on urinary urate excretion. J. Am. Soc. Nephrol. 15:164–173 (2004).

    PubMed  Google Scholar 

  167. F. Komoda, T. Sekine, J. Inatomi, A. Enomoto, H. Endou, T. Ota, T. Matsuyama, T. Ogata, M. Ikeda, M. Awazu, K. Muroya, I. Kamimaki, and T. Igarashi. The W258X mutation in SLC22A12 is the predominant cause of Japanese renal hypouricemia. Pediatr. Nephrol. 19:728–733 (2004).

    PubMed  Google Scholar 

  168. M. Tanaka, K. Itoh, K. Matsushita, K. Matsushita, N. Wakita, M. Adachi, H. Nonoguchi, K. Kitamura, M. Hosoyamada, H. Endou, and K. Tomita. Two male siblings with hereditary renal hypouricemia and exercise-induced ARF. Am. J. Kidney Dis. 42:1287–1292 (2003).

    PubMed  Google Scholar 

  169. E. Jigorel, M. Le Vee, C. Boursier-Neyret, Y. Parmentier, and O. Fardel. Differential regulation of sinusoidal and canalicular hepatic drug transporter expression by xenobiotics activating drug-sensing receptors in primary human hepatocytes. Drug Metab. Dispos. 34:1756–1763 (2006).

    PubMed  CAS  Google Scholar 

  170. N. J. Cherrington, A. L. Slitt, N. Li, and C. D. Klaassen. Lipopolysaccharide-mediated regulation of hepatic transporter mRNA levels in rats. Drug Metab. Dispos. 32:734–741 (2004).

    PubMed  CAS  Google Scholar 

  171. S. R. Villar, A. Brandoni, N. B. Quaglia, and A. M. Torres. Renal elimination of organic anions in rats with bilateral ureteral obstruction. Biochim. Biophys. Acta 1688:204–209 (2004).

    PubMed  CAS  Google Scholar 

  172. A. Brandoni, N. Anzai, Y. Kanai, H. Endou, and A. M. Torres. Renal elimination of p-aminohippurate (PAH) in response to three days of biliary obstruction in the rat. The role of OAT1 and OAT3. Biochim. Biophys. Acta 1762:673–682 (2006).

    PubMed  CAS  Google Scholar 

  173. A. M. Torres, M. Mac Laughlin, A. Muller, A. Brandoni, N. Anzai, and H. Endou. Altered renal elimination of organic anions in rats with chronic renal failure. Biochim. Biophys. Acta 1740:29–37 (2005).

    Google Scholar 

  174. C. Sauvant, H. Holzinger, and M. Gekle. Prostaglandin E2 inhibits its own renal transport by downregulation of organic anion transporters rOAT1 and rOAT3. J. Am. Soc. Nephrol. 17:46–53 (2006).

    PubMed  CAS  Google Scholar 

  175. C. Sauvant, H. Holzinger, and M. Gekle. Short-term regulation of basolateral organic anion uptake in proximal tubular OK cells: EGF acts via MAPK, PLA2, and COX1. J. Am. Soc. Nephrol. 13:1981–1991 (2002).

    PubMed  CAS  Google Scholar 

  176. C. Sauvant, D. Hesse, H. Holzinger, K. K. Evans, W. H. Dantzler, and M. Gekle. Action of EGF and PGE2 on basolateral organic anion uptake in rabbit proximal renal tubules and hOAT1 expressed in human kidney epithelial cells. Am. J. Physiol. Renal Physiol. 286:F774–F783 (2004).

    PubMed  CAS  Google Scholar 

  177. C. Sauvant, H. Holzinger, and M. Gekle. Short-term regulation of basolateral organic anion uptake in proximal tubular opossum kidney cells: prostaglandin E2 acts via receptor-mediated activation of protein kinase A. J. Am. Soc. Nephrol. 14:3017–3026 (2003).

    PubMed  CAS  Google Scholar 

  178. D. A. J. Bow, J. L. Perry, J. D. Simon, and J. B. Pritchard. The impact of plasma protein binding on the renal transport of organic anions. J. Pharmacol. Exp. Ther. 316:349–355 (2006).

    PubMed  CAS  Google Scholar 

  179. J. Rengelshausen, H. Lindenmaier, T. Cihlar, I. Walter-Sack, W. E. Haefeli, and J. Weiss. Inhibition of the human organic anion transporter 1 by the caffeine metabolite 1-methylxanthine. Biochem. Biophys. Res. Commun. 320:90–94 (2004).

    PubMed  CAS  Google Scholar 

  180. M. J. Jin, and H. K. Han. Interaction of zalcitabine with human organic anion transporter 1. Pharmazie 61:491–492 (2006).

    PubMed  CAS  Google Scholar 

  181. C. Srimaroeng, P. Jutabha, J. B. Pritchard, H. Endou, and V. Chatsudthipong. Interactions of stevioside and steviol with renal organic anion transporters in S2 cells and mouse renal cortical slices. Pharm. Res. 22:858–866 (2005).

    PubMed  CAS  Google Scholar 

  182. A. C. Whitley, D. H. Sweet, and T. Walle. The dietary polyphenol ellagic acid is a potent inhibitor of hOAT1. Drug Metab. Dispos. 33:1097–1100 (2005).

    PubMed  CAS  Google Scholar 

  183. R. K. Zalups, and S. Ahmad. Handling of cysteine S-conjugates of methylmercury in MDCK cells expressing human OAT1. Kidney Int. 68:1684–1699 (2005).

    PubMed  CAS  Google Scholar 

  184. S. Mori, S. Ohtsuki, H. Takanaga, T. Kikkawa, Y.-S. Kang, and T. Terasaki. Organic anion transporter 3 is involved in the brain-to-blood efflux transport of thiopruine nucleobase analogs. J. Neurochem. 90:931–941 (2004).

    PubMed  CAS  Google Scholar 

  185. H. Tahara, H. Kusuhara, K. Maeda, H. Koepsell, E. Fuse, and Y. Sugiyama. Inhibition of OAT3-mediated renal uptake as a mechanism for drug–drug interaction between fexofenadine and probenecid. Drug Metab. Dispos. 34:743–747 (2006).

    PubMed  CAS  Google Scholar 

  186. A. E. Busch, A. Schuster, S. Waldegger, C. A. Wagner, G. Zempel, S. Broer, J. Biber, H. Murer, and F. Lang. Expression of a renal type I sodium/phosphate transporter (NaPi-1) induces a conductance in Xenopus oocytes permeable for organic and inorganic anions. Proc. Natl. Acad. Sci. U. S. A. 93:5347–5351 (1996).

    PubMed  CAS  Google Scholar 

  187. P. Jutabha, Y. Kanai, M. Hosoyamada, A. Chairoungdua, D. K. Kim, Y. Iribe, E. Babu, J. Y. Kim, N. Anzai, V. Chatsudthipong, and H. Endou. Identification of a novel voltage-driven organic anion transporter present at apical membrane of renal proximal tubule. J. Biol. Chem. 278:27930–27938 (2003).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Burckhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rizwan, A.N., Burckhardt, G. Organic Anion Transporters of the SLC22 Family: Biopharmaceutical, Physiological, and Pathological Roles. Pharm Res 24, 450–470 (2007). https://doi.org/10.1007/s11095-006-9181-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9181-4

Key words

Navigation