Skip to main content

Advertisement

Log in

Microfabricated Particles for Engineered Drug Therapies: Elucidation into the Mechanisms of Cellular Internalization of PRINT Particles

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To investigate the cellular internalization pathways of shape- and size-specific particles as a function of zeta potential in different cell types.

Methods

A top-down particle fabrication technique called PRINT was utilized to fabricate monodisperse 1 μm cylindrical particles. Cellular internalization of these PRINT particles was monitored using confocal microscopy, flow cytometry, and transmission electron microscopy. The endocytic pathway used by 1 μm cationic PRINT particles was evaluated using different inhibitory strategies. Cytotoxicity assays were used to determine the toxicity of both cationic and anionic PRINT particles in multiple cell types.

Results

Particle internalization was confirmed using confocal microscopy, flow cytometry and transmission electron microscopy. The mechanism of internalization of positively charged PRINT particles was found to be predominantly clathrin-mediated endocytosis and macropinocytosis with very few particles utilizing a caveolae-mediated endocytic pathway. The exposed charge on the surface of the particles had a significant effect on the rate of endocytosis in all cell types tested, except for the macrophage cells. No significant cytotoxicity was observed for all PRINT particles used in the present study.

Conclusions

Cylindrical 1 μm PRINT particles were readily internalized into HeLa, NIH 3T3, OVCAR-3, MCF-7, and RAW 264.7 cells. Particles with a positive zeta potential exhibited an enhanced rate of endocytosis compared to negatively charged particles with identical sizes and shapes. It was found that PRINT particles with a positive zeta potential were endocytosed into HeLa cells using predominantely clathrin-mediated and macropinocytotic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. D’Emanueleand, and D. Attwood. Dendrimer-drug interactions. Adv. Drug Deliv. Rev. 57:2147–2162 (2005) doi:10.1016/j.addr.2005.09.012.

    Article  Google Scholar 

  2. N. C. Bellocq, D. W. Kang, X. H. Wang, G. S. Jensen, S. H. Pun, T. Schluep, M. L. Zepeda, and M. E. Davis. Synthetic biocompatible cyclodextrin-based constructs for local gene delivery to improve cutaneous wound healing. Bioconjug. Chem. 15:1201–1211 (2004) doi:10.1021/bc0498119.

    Article  PubMed  CAS  Google Scholar 

  3. M. A. Wolfert, P. R. Dash, O. Nazarova, D. Oupicky, L. W. Seymour, S. Smart, J. Strohalm, and K. Ulbrich. Polyelectrolyte vectors for gene delivery: Influence of cationic polymer on biophysical properties of complexes formed with DNA. Bioconjug. Chem. 10:993–1004 (1999) doi:10.1021/bc990025r.

    Article  PubMed  CAS  Google Scholar 

  4. S. M. Moghimi, A. C. Hunter, and J. C. Murray. Nanomedicine: current status and future prospects. FASEB J. 19:311–330 (2005) doi:10.1096/fj.04-2747rev.

    Article  PubMed  CAS  Google Scholar 

  5. Y. Barenholz. Liposome application: problems and prospects. Curr. Opin. Colloid Interface Sci. 6:66–77 (2001) doi:10.1016/S1359-0294(00)00090-X.

    Article  CAS  Google Scholar 

  6. R. Duncan. The dawning era of polymer therapeutics. Nature Reviews Drug Discovery. 2:347–360 (2003) doi:10.1038/nrd1088.

    Article  PubMed  CAS  Google Scholar 

  7. G. S. Kwonand, and K. Kataoka. Block-Copolymer Micelles as Long-Circulating Drug Vehicles. Adv. Drug Deliv. Rev. 16:295–309 (1995) doi:10.1016/0169-409X(95)00031-2.

    Article  Google Scholar 

  8. C. C. Lee, J. A. MacKay, J. M. J. Frechet, and F. C. Szoka. Designing dendrimers for biological applications. Nat. Biotechnol. 23:1517–1526 (2005) doi:10.1038/nbt1171.

    Article  PubMed  CAS  Google Scholar 

  9. K. McAllister, P. Sazani, M. Adam, M. J. Cho, M. Rubinstein, R. J. Samulski, and J. M. DeSimone. Polymeric nanogels produced via inverse microemulsion polymerization as potential gene and antisense delivery agents. J. Am. Chem. Soc. 124:15198–15207 (2002) doi:10.1021/ja027759q.

    Article  PubMed  CAS  Google Scholar 

  10. V. P. Torchilin. Targeted polymeric micelles for delivery of poorly soluble drugs. Cell. Mol. Life Sci. 61:2549–2559 (2004) doi:10.1007/s00018-004-4153-5.

    Article  PubMed  CAS  Google Scholar 

  11. M. J. Vicentand, and R. Duncan. Polymer conjugates: nanosized medicines for treating cancer. Trends Biotech. 24:39–47 (2006) doi:10.1016/j.tibtech.2005.11.006.

    Article  Google Scholar 

  12. H. P. Zobel, F. Stieneker, S. A. A. Aziz, M. Gilbert, D. Werner, C. R. Noe, J. Kreuter, and A. Zimmer. Evaluation of aminoalkylmethacrylate nanoparticles as colloidal drug carrier systems. Part II: characterization of antisense oligonucleotides loaded copolymer nanoparticles. Eur. J. Pharm. Biopharm. 48:1–12 (1999) doi:10.1016/S0939-6411(99)00003-X.

    Article  PubMed  CAS  Google Scholar 

  13. H. P. Zobel, A. Zimmer, S. A. A. Aziz, M. Gilbert, D. Werner, C. R. Noe, J. Kreuter, and F. Stieneker. Evaluation of aminoalkylmethacrylate nanoparticles as colloidal drug carrier systems. Part I: synthesis of monomers, dependence of the physical properties on the polymerization methods. Eur. J. Pharm. Biopharm. 47:203–213 (1999) doi:10.1016/S0939-6411(98)00100-3.

    Article  PubMed  CAS  Google Scholar 

  14. R. Langer. Drug delivery and targeting. Nature. 392:5–10 (1998).

    PubMed  CAS  Google Scholar 

  15. R. P. Kulkarni, D. D. Wu, M. E. Davis, and S. E. Fraser. Quantitating intracellular transport of polyplexes by spatio-temporal image correlation spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 102:7523–7528 (2005) doi:10.1073/pnas.0501950102.

    Article  PubMed  CAS  Google Scholar 

  16. N. C. Bellocq, S. H. Pun, G. S. Jensen, and M. E. Davis. Transferrin-containing, cyclodextrin polymer-based particles for tumor-targeted gene delivery. Bioconjug. Chem. 14:1122–1132 (2003) doi:10.1021/bc034125f.

    Article  PubMed  CAS  Google Scholar 

  17. S. Svensonand, and D. A. Tomalia. Commentary - Dendrimers in biomedical applications - reflections on the field. Adv. Drug Deliv. Rev. 57:2106–2129 (2005) doi:10.1016/j.addr.2005.09.018.

    Article  Google Scholar 

  18. R. Duncanand, and L. Izzo. Dendrimer biocompatibility and toxicity. Adv. Drug Deliv. Rev. 57:2215–2237 (2005) doi:10.1016/j.addr.2005.09.019.

    Article  Google Scholar 

  19. G. Domokos, B. Jopski, and K. H. Schmidt. Preparation, Properties and Biological Function of Liposome Encapsulated Hemoglobin. Biomater. Artif. Cells Immobil. Biotechnol. 20:345–354 (1992).

    CAS  Google Scholar 

  20. G. S. Kwonand, and K. Kataoka. Block-Copolymer Micelles as Long-Circulating Drug Vehicles. Adv. Drug Deliv. Rev. 16:295–309 (1995) doi:10.1016/0169-409X(95)00031-2.

    Article  Google Scholar 

  21. J. A. Champion, Y. K. Katare, and S. Mitragotri. Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers. J. Control. Release. 121:3–9 (2007) doi:10.1016/j.jconrel.2007.03.022.

    Article  PubMed  CAS  Google Scholar 

  22. L. E. Euliss, J. A. DuPont, S. Gratton, and J. DeSimone. Imparting size, shape, and composition control of materials for nanomedicine. Chem. Soc. Rev. 35:1095–1104 (2006) doi:10.1039/b600913c.

    Article  PubMed  CAS  Google Scholar 

  23. D. R. Arifinand, and A. F. Palmer. Stability of liposome encapsulated hemoglobin dispersions. Artificial Cells Blood Substitutes and Biotechnology. 33:113–136 (2005) doi:10.1081/BIO-200055874.

    Article  Google Scholar 

  24. S. L. Li, B. Byrne, J. Welsh, and A. F. Palmer. Self-assembled poly(butadiene)-b-poly(ethylene oxide) polymersomes as paclitaxel carriers. Biotechnol. Prog. 23:278–285 (2007) doi:10.1021/bp060208+.

    Article  PubMed  Google Scholar 

  25. S. E. A. Gratton, P. D. Pohlhaus, J. Lee, J. Guo, M. J. Cho, and J. M. DeSimone. Nanofabricated particles for engineered drug therapies: A preliminary biodistribution study of PRINT (TM) nanoparticles. J. Control. Release. 121:10–18 (2007) doi:10.1016/j.jconrel.2007.05.027.

    Article  PubMed  CAS  Google Scholar 

  26. J. P. Rolland, B. W. Maynor, L. E. Euliss, A. E. Exner, G. M. Denison, and J. M. DeSimone. Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J. Am. Chem. Soc. 127:10096–10100 (2005) doi:10.1021/ja051977c.

    Article  PubMed  CAS  Google Scholar 

  27. A. Fattorossi, R. Nisini, J. G. Pizzolo, and R. Damelio. New, Simple Flow-Cytometry Technique to Discriminate between Internalized and Membrane-Bound Particles in Phagocytosis. Cytometry. 10:320–325 (1989) doi:10.1002/cyto.990100311.

    Article  PubMed  CAS  Google Scholar 

  28. R. M. Martin, H. Leonhardt, and M. C. Cardoso. DNA labeling in living cells. Cytometry Part A. 67A:45–52 (2005) doi:10.1002/cyto.a.20172.

    Article  CAS  Google Scholar 

  29. B. L. Clarkeand, and P. H. Weigel. Recycling of the Asialoglycoprotein Receptor in Isolated Rat Hepatocytes - Atp Depletion Blocks Receptor Recycling but Not a Single Round of Endocytosis. J. Biol. Chem. 260:128–133 (1985).

    Google Scholar 

  30. E. Macia, M. Ehrlich, R. Massol, E. Boucrot, C. Brunner, and T. Kirchhausen. Dynasore, a cell-permeable inhibitor of dynamin. Developmental Cell. 10:839–850 (2006) doi:10.1016/j.devcel.2006.04.002.

    Article  PubMed  CAS  Google Scholar 

  31. O. Harush-Frenkel, N. Debotton, S. Benita, and Y. Altschuler. Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem. Biophys. Res. Commun. 353:26–32 (2007) doi:10.1016/j.bbrc.2006.11.135.

    Article  PubMed  CAS  Google Scholar 

  32. M. C. Garnett. Gene-delivery systems using cationic polymers. Crit. Rev. Ther. Drug Carr. Syst. 16:147–207 (1999).

    CAS  Google Scholar 

  33. W. Zauner, M. Ogris, and E. Wagner. Polylysine-based transfection systems utilizing receptor-mediated delivery. Adv. Drug Deliv. Rev. 30:97–113 (1998) doi:10.1016/S0169-409X(97)00110-5.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the STC Program of the NSF (CHE-9876674), NIH PPG P01-GM059299-07, NIH 5-654-CA119343-02 (the Carolina Center of Cancer Nanotechnology Excellence), the William R. Kenan Professorship of the University of North Carolina at Chapel Hill, and Liquidia Technologies (SRA 04-0013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph M. DeSimone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gratton, S.E.A., Napier, M.E., Ropp, P.A. et al. Microfabricated Particles for Engineered Drug Therapies: Elucidation into the Mechanisms of Cellular Internalization of PRINT Particles. Pharm Res 25, 2845–2852 (2008). https://doi.org/10.1007/s11095-008-9654-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9654-8

KEY WORDS

Navigation