Skip to main content
Log in

Sensory–sympathetic coupling in superior cervical ganglia after myocardial ischemic injury facilitates sympathoexcitatory action via P2X7 receptor

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

P2X receptors participate in cardiovascular regulation and disease. After myocardial ischemic injury, sensory–sympathetic coupling between rat cervical DRG nerves and superior cervical ganglia (SCG) facilitated sympathoexcitatory action via P2X7 receptor. The results showed that after myocardial ischemic injury, the systolic blood pressure, heart rate, serum cardiac enzymes, IL-6, and TNF-α were increased, while the levels of P2X7 mRNA and protein in SCG were also upregulated. However, these alterations diminished after treatment of myocardial ischemic (MI) rats with the P2X7 antagonist oxATP. After siRNA P2X7 in MI rats, the systolic blood pressure, heart rate, serum cardiac enzymes, the expression levels of the satellite glial cell (SGC) or P2X7 were significantly lower than those in MI group. The phosphorylation of ERK 1/2 in SCG participated in the molecular mechanism of the sympathoexcitatory action induced by the myocardial ischemic injury. Retrograde tracing test revealed the sprouting of CGRP or SP sensory nerves (the markers of sensory afferent fibers) from DRG to SCG neurons. The upregulated P2X7 receptor promoted the activation of SGCs in SCG, resulting in the formation of sensory–sympathetic coupling which facilitated the sympathoexcitatory action. P2X7 antagonist oxATP could inhibit the activation of SGCs and interrupt the formation of sensory–sympathetic coupling in SCG after the myocardial ischemic injury. Our findings may benefit the treatment of coronary heart disease and other cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ATP:

Adenosine triphosphate

CGRP:

Calcitonin gene-related peptide

CK:

Creatine kinase

CK-MB:

Creatine kinase isoform MB

cTn-I:

Cardiac troponin I

DRG:

Dorsal root ganglia

ECG:

Electrocardiogram

ELISA:

Enzyme-linked immunosorbent assay

ERK1/2:

Extracellular signal-regulated protein kinases

GS:

Glutamine synthetase

HRP:

Horseradish peroxidase

IOD:

Integrated optical density

IL-6:

Interleukin-6

ISH:

In situ hybridization

LCA:

Left coronary artery

LDH:

Lactate dehydrogenase

MI:

Myocardial ischemic

NeuN:

Neuronal Nuclei

oxATP:

Oxidized ATP (ATP with the 2′- and 3′-hydroxyl moieties oxidized to aldehydes by periodate treatment)

PCR:

Polymerase chain reaction

p-ERK1/2:

Phosphorylated extracellular signal-regulated protein kinases

SP:

Substance P

TH:

Tyrosine hydroxylase

TNF-α:

Tumor necrosis factor-α

SGCs:

Satellite glial cells

SCG:

Superior cervical ganglia

siRNA:

Small interference RNA

References

  1. Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32:19–29

    Article  PubMed  CAS  Google Scholar 

  2. Adams JE III, Bodor GS, Davila-Roman VG, Delmez JA, Apple FS, Ladenson JH, Jaffe AS (1993) Cardiac troponin I. A marker with high specificity for cardiac injury. Circulation 88:101–106

    Article  PubMed  Google Scholar 

  3. Arbeloa J, Pérez-Samartín A, Gottlieb M, Matute C (2012) P2X7 receptor blockade prevents ATP excitotoxicity in neurons and reduces brain damage after ischemia. Neurobiol Dis 45:954–961

    Article  PubMed  CAS  Google Scholar 

  4. Armour JA (1999) Myocardial ischaemia and the cardiac nervous system. Cardiovasc Res 41:41–54

    Article  PubMed  CAS  Google Scholar 

  5. Bertinchant JP, Larue C, Pernel I, Ledermann B, Fabbro-Peray P, Beck L, Calzolari C, Trinquier S, Nigond J, Pau B (1996) Release kinetics of serum cardiac troponin I in ischemic myocardial injury. Clin Biochem 29(6):587–594

    Article  PubMed  CAS  Google Scholar 

  6. Boehm S, Kubista H (2002) Fine tuning of sympathetic transmitter release via ionotropic and metabotropic presynaptic receptors. Pharmacol Rev 54:43–99

    Article  PubMed  CAS  Google Scholar 

  7. Bours MJ, Swennen EL, Di Virgilio F, Cronstein BN, Dagnelie PC (2006) Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 112:358–404

    Article  PubMed  CAS  Google Scholar 

  8. Brass D, Grably MR, Bronstein-Sitton N, Gohar O, Meir A (2012) Using antibodies against P2Y and P2X receptors in purinergic signaling research. Purinergic Signal 8(Suppl 1):S61–S79

    Article  Google Scholar 

  9. Burnstock G (2006) Purinergic P2 receptors as targets for novel analgesics. Pharmacol Ther 110:433–454

    Article  PubMed  CAS  Google Scholar 

  10. Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797

    Article  PubMed  CAS  Google Scholar 

  11. Burnstock G, Krügel U, Abbracchio MP, Illes P (2011) Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 95:229–274

    Article  PubMed  CAS  Google Scholar 

  12. Colomar A, Marty V, Medina C, Combe C, Parnet P, Amedee T (2003) Maturation and release of interleukin-1beta by lipopolysaccharide-primed mouse Schwann cells require the stimulation of P2X7 receptors. J Biol Chem 278:30732–30740

    Article  PubMed  CAS  Google Scholar 

  13. Cotrina ML, Nedergaard M (2009) Physiological and pathological functions of P2X7 receptor in the spinal cord. Purinergic Signal 5:223–232

    Article  PubMed  CAS  Google Scholar 

  14. Dai Y, Fukuoka T, Wang H, Yamanaka H, Obata K, Tokunaga A, Noguchi K (2004) Contribution of sensitized P2X receptors in inflamed tissue to the mechanical hypersensitivity revealed by phosphorylated ERK in DRG neurons. Pain 108(3):258–266

    Article  PubMed  CAS  Google Scholar 

  15. Erlinge D, Burnstock G (2008) P2 receptors in cardiovascular regulation and disease. Purinergic Signal 4:1–20

    Article  PubMed  CAS  Google Scholar 

  16. Falahati A, Sharkey SW, Christensen D, McCoy M, Miller EA, Murakami MA, Apple FS (1999) Implementation of serum cardiac troponin I as marker for detection of acute myocardial infarction. Am Heart J 137:332–337

    Article  PubMed  CAS  Google Scholar 

  17. Feldman AM, Combes A, Wagner D, Kadakomi T, Kubota T, Li Y, McTiernan C (2000) The role of tumor necrosis factor in the pathophysiology of heart failure. J Am Coll Cardiol 35:537–544

    Article  PubMed  CAS  Google Scholar 

  18. Ferrari D, Pizzirani C, Adinolfi E, Lemoli RM, Curti A, Idzko M, Panther E, Virgilio FD (2006) The P2X7 receptor: a key player in IL-1 processing and release. J mmunol 176:3877–3883

    CAS  Google Scholar 

  19. Fu LW, Longhurst JC (2010) A new function for ATP. Am J Physiol Heart Circ Physiol 299:H1762–H1771

    Article  PubMed  CAS  Google Scholar 

  20. Gourine AV, Wood JD, Burnstock G (2009) Purinergic signalling in autonomic control. Trends Neurosci 32:241–248

    Article  PubMed  CAS  Google Scholar 

  21. Hanani M (2010) Satellite glial cells in sympathetic and parasympathetic ganglia: in search of function. Brain Res Rev 64:304–327

    Article  PubMed  CAS  Google Scholar 

  22. Higuchi T, Stephan G, Nekolla RS, Poethko T, Yu M, Wester HJ, Casebier DS, Robinson SP, Botnar RM, Schwaiger M (2008) A new 18F-labeled myocardial PET tracer: myocardial uptake after permanent and transient coronary occlusion in rats. Nucl Med 49:1715–1722

    Article  Google Scholar 

  23. Hukkanen M, Platts LAM, Corbett SA, Santavirta S, Polak JM, Konttinen YT (2002) Reciprocal age-related changes in GAP-43/B-50, substance P and calcitonin gene-related peptide (CGRP) expression in rat primary sensory neurones and their terminals in the dorsal horn of the spinal cord and subintima of the knee synovium. Neurosci Res 42:251–260

    Article  PubMed  CAS  Google Scholar 

  24. Ioannidis JP, Karvouni E, Katritsis DG (2003) Mortality risk conferred by small elevations of creatine kinase-MB isoenzyme after percutaneous coronary intervention. J Am Coll Cardiol 42:1406–1411

    Article  PubMed  CAS  Google Scholar 

  25. Jardine DL, Charles CJ, Ashton RK, Bennett SI, Whitehead M, Frampton CM, Nicholls MG (2004) Increased cardiac sympathetic nerve activity following acute myocardial in a sheep model. J Physiol 565:325–333

    Article  Google Scholar 

  26. Li DP, Pan HL (2000) Responses of neurons in rostral ventrolateral medulla to activation of cardiac receptors in rats. Am J Physiol Heart Circ Physiol 279:H2549–H2557

    PubMed  CAS  Google Scholar 

  27. Li GL, Liu SM, Zhang J, Xu CS, Lin JR, Li X, Liang SD (2010) Increased sympathoexcitatory reflex induced by myocardial ischemic nociceptive signaling via P2X2/3 receptor in rat superior cervical ganglia. Neurochem Int 56(8):984–390

    Article  PubMed  CAS  Google Scholar 

  28. Li GL, Liu SM, Yang Y, Xie JY, Liu J, Kong FJ, Tu GH, Wu RP, Li GD, Liang SD (2011) Effects of oxymatrine on sympathoexcitatory reflex induced by myocardial ischemic signaling mediated by P2X3 receptors in rat SCG and DRG. Brain Res Bull 84:419–424

    Article  PubMed  CAS  Google Scholar 

  29. Li W, Knowlton D, Van Winkle DM, Habecker BA (2004) Infarction alters both the distribution and noradrenergic properties of cardiac sympathetic neurons. Am J Physiol Heart Circ Physiol 286:H2229–H2236

    Article  PubMed  CAS  Google Scholar 

  30. Liang SD, Xu CS, Li GL, Gao Y (2010) P2X receptors and modulation of pain transmission: focus on effects of drugs and compounds used in traditional Chinese medicine. Neurochem Int 57:705–712

    Article  PubMed  CAS  Google Scholar 

  31. Lieu TM, Kollarik M, Myers AC, Undem BJ (2011) Neurotrophin and GDNF family ligand receptor expression in vagal sensory nerve subtypes innervating the adult guinea pig respiratory tract. Am J Physiol Lung Cell Mol Physiol 300:L790–L798

    Article  PubMed  CAS  Google Scholar 

  32. Matsmori A (2003) Roles of cytokines in the pathogenesis of heart failure. Nippon Rinsho 61:745–750

    Google Scholar 

  33. Meller ST, Gebhart GF (1992) A critical review of the afferent pathways and the potential chemical mediators involved in cardiac pain. Neuroscience 48:501–24

    Article  PubMed  CAS  Google Scholar 

  34. Pather N, Partab P, Singh B, Satyapal KS (2003) The sympathetic contribution to the cardiac plexus. Surg Radiol Anat 25(3–4):210–215

    Article  PubMed  CAS  Google Scholar 

  35. Ponnusamy M, Liu N, Gong R, Yan H, Zhuang S (2011) ERK pathway mediates P2X7 expression and cell death in renal interstitial fibroblasts exposed to necrotic renal epithelial cells. Am J Physiol Renal Physiol 301:F650–F659

    Article  PubMed  CAS  Google Scholar 

  36. Ricciardi MJ, Davidson CJ, Gubernikoff G, Beohar N, Eckman LJ, Parker MA, Bonow RO (2003) Troponin I elevation and cardiac events after percutaneous coronary intervention. Am Heart J 145:2–8

    Article  Google Scholar 

  37. Seino D, Tokunaga A, Tachibana T, Yoshiya S, Dai Y, Obata K, Yamanaka H, Kobayashi K, Noguchi K (2006) The role of ERK signaling and the P2X receptor on mechanical pain evoked by movement of inflamed knee joint. Pain 123:93–203

    Article  Google Scholar 

  38. Shao LJ, Liang SD, Li GL, Xu CS, Zhang CP (2007) Exploration of P2X3 in the rat stellate ganglia after myocardial ischemia. Acta Histochem 109:330–337

    Article  PubMed  CAS  Google Scholar 

  39. Shinder V, Govrin-Lippmann R, Cohen S, Belenky M, Ilin P, Fried K, Wilkinson HA, Devor M (1999) Structural basis of sympathetic–sensory coupling in rat and human dorsal root ganglia following peripheral nerve injury. J Neurocytol 28:743–761

    Article  PubMed  CAS  Google Scholar 

  40. Skaper SD, Debetto P, Giusti P (2010) The P2X7 purinergic receptor: from physiology to neurological disorders. FASEB J 24:337–345

    Article  PubMed  CAS  Google Scholar 

  41. Sperlagh B, Vizi ES, Wirkner K, Illes P (2006) P2X7 receptors in the nervous system. Prog Neurobiol 78:327–346

    Article  PubMed  CAS  Google Scholar 

  42. Stritesky M, Dobias M, Demes R, Semrad M, Poliachova E, Cermak T, Charvat J, Malek I (2006) Endoscopic thoracic sympathectomy—its effect in the treatment of refractory angina pectoris. Interact Cardiovasc Thorac Surg 5:464–468

    Article  PubMed  Google Scholar 

  43. Swissa M, Zhou SM, Gonzalez-Gomez I, Chang CM, Lai AC, Cates AW, Fishbein MC, Karagueuzian HS, Chen PS, Chen LS (2004) Long-term subthreshold electrical stimulation of the left stellate ganglion and a canine model of sudden cardiac death. J Am Coll Cardiol 43:858–864

    Article  PubMed  Google Scholar 

  44. Thames MD, Kinugawa T, Dibner-Dunlap ME (1993) Reflex sympathoexcitation by cardiac afferents during myocardial ischemia: role of adenosine. Circulation 87:1698–704

    Article  PubMed  CAS  Google Scholar 

  45. Verderio C, Matteoli M (2011) ATP in neuron–glia bidirectional signaling. Brain Res Rev 66:106–114

    Article  PubMed  CAS  Google Scholar 

  46. Verkhratsky A, Parpura V, Rodríguez JJ (2011) Where the thoughts dwell: the physiology of neuronal–glial “diffuse neural net”. Brain Res Rev 66:133–151

    Article  PubMed  Google Scholar 

  47. Vassort G (2001) Adenosine 5′-triphosphate: a P2-purinergic agonist in the myocardium. Physiol Rev 81:767–806

    PubMed  CAS  Google Scholar 

  48. Vizi ES, Liang SD, Sperlágh B, Kittel A, Jurányi Z (1997) Studies on the release and extracellular metabolism of endogenous ATP in rat superior cervical ganglion: support for neurotransmitter role of ATP. Neuroscience 79:893–903

    Article  PubMed  CAS  Google Scholar 

  49. Wan F, Li GL, Liu SM, Zhu GC, Xu SH, Lin JR, Zhang J, Li X, Liang SD (2010) P2X2/3 receptor activity of rat nodose ganglion neurons contributing to myocardial ischemic nociceptive signaling. Auton Neurosci: Basic Clin 158:58–64

    Article  CAS  Google Scholar 

  50. Wang YX, Li GL, Liang SD, Wan F, Xu CS, Gao Y, Liu SM, Lin JR (2009) Expression of P2X2 and P2X3 receptors in rat nodose neurons after myocardial ischemia injury. Auton Neurosci 145:71–75

    Article  PubMed  CAS  Google Scholar 

  51. Wang YX, Li GL, Liang SD, Zhang AX, Xu CS, Gao Y, Zhang CP, Wan F (2008) Role of P2X3 receptor in myocardial ischemia injury and nociceptive sensory transmission. Auton Neurosci 139:30–37

    Article  PubMed  CAS  Google Scholar 

  52. Watters JJ, Sommer JA, Pfeiffer ZA, Prabhu U, Guerra AN, Bertics PJ (2002) A differential role for the mitogen-activated protein kinases in lipopolysaccharide signaling: the MEK/ERK pathway is not essential for nitric oxide and interleukin 1beta production. J Biol Chem 277:9077–9087

    Article  PubMed  CAS  Google Scholar 

  53. Weick M, Cherkas PS, Härtig W, Pannicke T, Uckermann O, Bringmann A, Tal M, Reichenbach A, Hanani M (2003) P2 receptors in satellite glial cells in trigeminal ganglia of mice. Neuroscience 120:969–977

    Article  PubMed  CAS  Google Scholar 

  54. Xiang Z, Bo X, Burnstock G (1998) Localization of ATP-gated P2X receptor immunoreactivity in rat sensory and sympathetic ganglia. Neurosci Lett 256:105–108

    Article  PubMed  CAS  Google Scholar 

  55. Xie W, Strong JA, Zhang JM (2010) Increased excitability and spontaneous activity of rat sensory neurons following in vitro stimulation of sympathetic fiber sprouts in the isolated dorsal root ganglion. Pain 151:447–459

    Article  PubMed  Google Scholar 

  56. Yan Z, Li S, Liang Z, Tomic M, Stojilkovic SS (2012) The P2X7 receptor channel pore dilates under physiological ion conditions. J Gen Physiol 132:563–573

    Article  Google Scholar 

  57. Yao H, Zhang Y, He F, Wang C, Xiao Z, Zou J, Wang F, Liu Z (2012) Short hairpin RNA targeting 2B gene of coxsackievirus B3 exhibits potential antiviral effects both in vitro and in vivo. BMC Infect Dis 12:177

    Article  PubMed  CAS  Google Scholar 

  58. Zhang CP, Liang SD, Li GL, Xu CS, Gao Y, Wang YX, Zhang AX, Wan F (2007) The involvement of P2X3 receptors of rat sympathetic ganglia in cardiac nociceptive transmission. J Physiol Biochem 63(3):249–258

    Article  PubMed  CAS  Google Scholar 

  59. Zhang CP, Li GL, Liang SD, Xu CS, Zhu GC, Wang YX, Zhang AX, Wan F (2008) Myocardial ischemic nociceptive signaling mediated by P2X3 receptor in rat stellate ganglion neurons. Brain Res Bull 75:77–82

    Article  PubMed  CAS  Google Scholar 

  60. Zhang X, Chen Y, Wang C, Huang LY (2007) Neuronal somatic ATP release triggers neuron-satellite glial cell communication in dorsal root ganglia. Proc Natl Acad Sci USA 104:9864–9869

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants (№s. 81171184, 31060139, 30860086, 30660048, and 81200853) from National Natural Science Foundation of China, grants (№s. 0640042 and 2008GZY0029) from Natural Science Foundation of Jiangxi Province, grants (№s. 2010BSA09500 and 20111BBG70009-1) from Technology Pedestal and Society Development Project of Jiangxi Province, and grant (№. GJJ13155) from Education Department of Jiangxi Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shangdong Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Li, G., Peng, H. et al. Sensory–sympathetic coupling in superior cervical ganglia after myocardial ischemic injury facilitates sympathoexcitatory action via P2X7 receptor. Purinergic Signalling 9, 463–479 (2013). https://doi.org/10.1007/s11302-013-9367-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-013-9367-2

Keywords

Navigation