Skip to main content
Log in

The role of activated adenosine receptors in degranulation of human LAD2 mast cells

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Mast cell degranulation triggers hypersensitivity reactions at the body–environment interface. Adenosine modulates degranulation, but enhancement and inhibition have both been reported. Which of four adenosine receptors (ARs) mediate modulation, and how, remains uncertain. Also uncertain is whether adenosine reaches mast cell ARs by autocrine ATP release and ecto-enzymatic conversion. Uncertainties partly reflect species and cell heterogeneity, circumvented here by focusing on homogeneous human LAD2 cells. Quantitative PCR detected expression of A2A, A2B, and A3, but not A1, ARs. Nonselective activation of ARs with increasing NECA monotonically enhanced immunologically or C3a-stimulated degranulation. NECA alone stimulated degranulation slightly. Selective AR antagonists did not affect C3a-stimulated degranulation. NECA's enhancement of C3a-triggered degranulation was partially inhibited by separate application of each selective antagonist, and abolished by simultaneous addition of antagonists to the three ARs. Only the A2A antagonist separately inhibited NECA's enhancement of immunologically stimulated degranulation, which was abolished by simultaneous addition of the three selective antagonists. Immunological or C3a activation did not stimulate ATP release. NECA also enhanced immunologically triggered degranulation of mouse bone marrow derived mast cells (BMMCs), which was partially reduced only by simultaneous addition of the three antagonists or by the nonselective antagonist CGS15943. BMMCs also expressed A2A, A2B, and A3 ARs. but not A1AR detectably. We conclude that (a) A1AR is unnecessary for LAD2 degranulation or AR enhancement; (b) A2A, A2B, and A3 ARs all contribute to pharmacologic AR enhancement of LAD2 and BMMC degranulation; and (c) LAD2 cells depend on microenvironmental adenosine to trigger AR modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Prussin C, Metcalfe DD (2006) IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol 117(2 Suppl Mini-Primer):S450–S456

    Article  CAS  PubMed  Google Scholar 

  2. Irani AM (2008) Ocular mast cells and mediators. Immunol Allergy Clin North Am 28(1):25–42, v

    Article  PubMed  Google Scholar 

  3. Turner H, Kinet JP (1999) Signalling through the high-affinity IgE receptor Fc epsilonRI. Nature 402(6760 Suppl):B24–B30

    Article  CAS  PubMed  Google Scholar 

  4. Duffy SM, Cruse G, Brightling CE, Bradding P (2007) Adenosine closes the K + channel KCa3.1 in human lung mast cells and inhibits their migration via the adenosine A2A receptor. Eur J Immunol 37(6):1653–1662

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Broide DH (2001) Molecular and cellular mechanisms of allergic disease. J Allergy Clin Immunol 108(2 Suppl):S65–S71

    Article  CAS  PubMed  Google Scholar 

  6. Gilfillan AM, Tkaczyk C (2006) Integrated signalling pathways for mast-cell activation. Nat Rev Immunol 6(3):218–230

    Article  CAS  PubMed  Google Scholar 

  7. Venkatesha RT, Berla Thangam E, Zaidi AK, Ali H (2005) Distinct regulation of C3a-induced MCP-1/CCL2 and RANTES/CCL5 production in human mast cells by extracellular signal regulated kinase and PI3 kinase. Mol Immunol 42(5):581–587

    Article  CAS  PubMed  Google Scholar 

  8. Marquardt DL, Parker CW, Sullivan TJ (1978) Potentiation of mast cell mediator release by adenosine. J Immunol 120(3):871–878

    CAS  PubMed  Google Scholar 

  9. van den Berge M, Hylkema MN, Versluis M, Postma DS (2007) Role of adenosine receptors in the treatment of asthma and chronic obstructive pulmonary disease: recent developments. Drugs R D 8(1):13–23

    Article  PubMed  Google Scholar 

  10. Yip KH, Lau HY, Wise H (2011) Reciprocal modulation of anti-IgE induced histamine release from human mast cells by A(1) and A(2B) adenosine receptors. Br J Pharmacol 164(2b):807–819

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Yip KH, Wong LL, Lau HY (2009) Adenosine: roles of different receptor subtypes in mediating histamine release from human and rodent mast cells. Inflamm Res 58(Suppl 1):17–19

    Article  PubMed  Google Scholar 

  12. Broide DH, Metcalfe DD, Wasserman SI (1988) Functional and biochemical characterization of rat bone marrow derived mast cells. J Immunol 141(12):4298–4305

    CAS  PubMed  Google Scholar 

  13. Gomez G, Zhao W, Schwartz LB (2011) Disparity in FcepsilonRI-induced degranulation of primary human lung and skin mast cells exposed to adenosine. J Clin Immunol 31 (3):479–487

    Google Scholar 

  14. Peachell PT, Lichtenstein LM, Schleimer RP (1991) Differential regulation of human basophil and lung mast cell function by adenosine. J Pharmacol Exp Ther 256(2):717–726

    CAS  PubMed  Google Scholar 

  15. Zaidi AK, Amrani Y, Panettieri RA, Ali H (2006) Response to C3a, mast cells, and asthma. Faseb J 20(2):199

    Article  CAS  PubMed  Google Scholar 

  16. Hua X, Chason KD, Jania C, Acosta T, Ledent C, Tilley S (2013) Gs-coupled adenosine receptors differentially limit antigen-induced mast cell activation. J Pharmacol Exp Ther 344(2):426–435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Hua X, Chason KD, Fredholm BB, Deshpande DA, Penn RB, Tilley SL (2008) Adenosine induces airway hyperresponsiveness through activation of A3 receptors on mast cells. J Allergy Clin Immunol 122 (1):107–113, 113 e101-107

    Google Scholar 

  18. Hua X, Kovarova M, Chason KD, Nguyen M, Koller BH, Tilley SL (2007) Enhanced mast cell activation in mice deficient in the A2b adenosine receptor. J Exp Med 204(1):117–128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Auchampach JA, Jin X, Wan TC, Caughey GH, Linden J (1997) Canine mast cell adenosine receptors: cloning and expression of the A3 receptor and evidence that degranulation is mediated by the A2B receptor. Mol Pharmacol 52(5):846–860

    Article  CAS  PubMed  Google Scholar 

  20. Suzuki H, Takei M, Nakahata T, Fukamachi H (1998) Inhibitory effect of adenosine on degranulation of human cultured mast cells upon cross-linking of Fc epsilon RI. Biochem Biophys Res Commun 242(3):697–702

    Article  CAS  PubMed  Google Scholar 

  21. Osipchuk Y, Cahalan M (1992) Cell-to-cell spread of calcium signals mediated by ATP receptors in mast cells. Nature 359(6392):241–244

    Article  CAS  PubMed  Google Scholar 

  22. Marquardt DL, Gruber HE, Wasserman SI (1984) Adenosine release from stimulated mast cells. Proc Natl Acad Sci U S A 81(19):6192–6196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Kirshenbaum AS, Akin C, Wu Y, Rottem M, Goff JP, Beaven MA, Rao VK, Metcalfe DD (2003) Characterization of novel stem cell factor responsive human mast cell lines LAD 1 and 2 established from a patient with mast cell sarcoma/leukemia; activation following aggregation of FcepsilonRI or FcgammaRI. Leuk Res 27(8):677–682

    Article  CAS  PubMed  Google Scholar 

  24. Kambayashi T, Okumura M, Baker RG, Hsu CJ, Baumgart T, Zhang W, Koretzky GA Independent and cooperative roles of adaptor molecules in proximal signaling during FcepsilonRI-mediated mast cell activation. Mol Cell Biol 30(17)

  25. Li A, Leung CT, Peterson-Yantorno K, Mitchell CH, Civan MM (2010) Pathways for ATP release by bovine ciliary epithelial cells, the initial step in purinergic regulation of aqueous humor inflow. Am J Physiol Cell Physiol 299(6):C1308–C1317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Kim HO, Ji XD, Siddiqi SM, Olah ME, Stiles GL, Jacobson KA (1994) 2-Substitution of N6-benzyladenosine-5'-uronamides enhances selectivity for A3 adenosine receptors. J Med Chem 37(21):3614–3621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Jacobson KA, Gao ZG (2006) Adenosine receptors as therapeutic targets. Nature Rev 5:1–18

    Google Scholar 

  28. Kecskes M, Kumar TS, Yoo L, Gao ZG, Jacobson KA (2010) Novel Alexa Fluor-488 labeled antagonist of the A(2A) adenosine receptor: Application to a fluorescence polarization-based receptor binding assay. Biochem Pharmacol 80(4):506–511

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Kim YC, Ji X, Melman N, Linden J, Jacobson KA (2000) Anilide derivatives of an 8-phenylxanthine carboxylic congener are highly potent and selective antagonists at human A(2B) adenosine receptors. J Med Chem 43(6):1165–1172

    Article  CAS  PubMed  Google Scholar 

  30. Liang BT, Haltiwanger B (1995) Adenosine A2a and A2b receptors in cultured fetal chick heart cells. High- and low-affinity coupling to stimulation of myocyte contractility and cAMP accumulation. Circ Res 76(2):242–251

    Article  CAS  PubMed  Google Scholar 

  31. Li A, Leung CT, Peterson-Yantorno K, Stamer WD, Civan MM (2011) Cytoskeletal dependence of adenosine triphosphate release by human trabecular meshwork cells. Invest Ophthalmol Vis Sci 52(11):7996–8005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Li A, Banerjee J, Peterson-Yantorno K, Stamer WD, Leung CT, Civan MM (2012) Effects of cardiotonic steroids on trabecular meshwork cells: search for mediator of ouabain-enhanced outflow facility. Exp Eye Res 96(1):4–12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Li A, Leung CT, Peterson-Yantorno K, Stamer WD, Mitchell CH, Civan MM (2012) Mechanisms of ATP release by human trabecular meshwork cells, the enabling step in purinergic regulation of aqueous humor outflow. J Cell Physiol 227:172–182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Möller C, Xiang Z, Nilsson G (2003) Activation of mast cells by immunoglobulin E-receptor cross-linkage, but not through adenosine receptors, induces A1 expression and promotes survival. Clin Exp Allergy 33(8):1135–1140

    Google Scholar 

  35. Marquardt DL, Walker LL, Heinemann S (1994) Cloning of two adenosine receptor subtypes from mouse bone marrow-derived mast cells. J Immunol 152(9):4508–4515

    CAS  PubMed  Google Scholar 

  36. Reeves JJ, Jones CA, Sheehan MJ, Vardey CJ, Whelan CJ (1997) Adenosine A3 receptors promote degranulation of rat mast cells both in vitro and in vivo. Inflamm Res 46(5):180–184

    Article  CAS  PubMed  Google Scholar 

  37. Hua X, Chason KD, Patel JY, Naselsky WC, Tilley SL (2011) IL-4 amplifies the pro-inflammatory effect of adenosine in human mast cells by changing expression levels of adenosine receptors. PLoS One 6(9):e24947

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Forsythe P, McGarvey LP, Heaney LG, MacMahon J, Ennis M (1999) Adenosine induces histamine release from human bronchoalveolar lavage mast cells. Clin Sci (Lond) 96(4):349–355

    Article  CAS  Google Scholar 

  39. Idzko M, Hammad H, van Nimwegen M, Kool M, Willart MA, Muskens F, Hoogsteden HC, Luttmann W, Ferrari D, Di Virgilio F, Virchow JC Jr, Lambrecht BN (2007) Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells. Nature Medicine 13(8):913–919

    Article  CAS  PubMed  Google Scholar 

  40. Livingston M, Heaney LG, Ennis M (2004) Adenosine, inflammation and asthma–a review. Inflamm Res 53(5):171–178

    Article  CAS  PubMed  Google Scholar 

  41. Hughes PJ, Holgate ST, Church MK (1984) Adenosine inhibits and potentiates IgE-dependent histamine release from human lung mast cells by an A2-purinoceptor mediated mechanism. Biochem Pharmacol 33(23):3847–3852

    Article  CAS  PubMed  Google Scholar 

  42. Zhong H, Chunn JL, Volmer JB, Fozard JR, Blackburn MR (2001) Adenosine-mediated mast cell degranulation in adenosine deaminase-deficient mice. J Pharmacol Exp Ther 298(2):433–440

    CAS  PubMed  Google Scholar 

  43. Driver AG, Kukoly CA, Ali S, Mustafa SJ (1993) Adenosine in bronchoalveolar lavage fluid in asthma. Am Rev Respir Dis 148(1):91–97

    Article  CAS  PubMed  Google Scholar 

  44. Shin Y, Daly JW, Jacobson KA (1996) Activation of phosphoinositide breakdown and elevation of intracellular calcium in a rat RBL-2H3 mast cell line by adenosine analogs: involvement of A(3)-adenosine receptors? Drug Dev Res 39(1):36–46

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Fredholm BB, Irenius E, Kull B, Schulte G (2001) Comparison of the potency of adenosine as an agonist at human adenosine receptors expressed in Chinese hamster ovary cells. Biochem Pharmacol 61(4):443–448

    Article  CAS  PubMed  Google Scholar 

  46. Epperson SA, Brunton LL, Ramirez-Sanchez I, Villarreal F (2009) Adenosine receptors and second messenger signaling pathways in rat cardiac fibroblasts. Am J Physiol Cell Physiol 296(5):C1171–C1177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53(4):527–552

    CAS  PubMed  Google Scholar 

  48. Fredholm BB, IJzerman AP, Jacobson KA, Linden J, Müller CE, International Union of Basic and Clinical Pharmacology (2011) Nomenclature and classification of adenosine receptors—an update. Pharmacol Rev 63(1):1–34

    Google Scholar 

Download references

Acknowledgments

Supported by NIH Research Grant EY13624 and Core Grant EY01583 (M.M.C.); University of Pennsylvania Research Foundation and NIDDK Intramural Research Program, National Institutes of Health. We thank Drs. Arnold Kirshenbaum and Dean Metcalfe (NIAID, NIH, Bethesda, MD, USA) for providing LAD2 cells, and Dr. Hydar Ali (University of Pennsylvania) for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mortimer M. Civan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leung, C.T., Li, A., Banerjee, J. et al. The role of activated adenosine receptors in degranulation of human LAD2 mast cells. Purinergic Signalling 10, 465–475 (2014). https://doi.org/10.1007/s11302-014-9409-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-014-9409-4

Keywords

Navigation