Skip to main content

Advertisement

Log in

Genetics of Cholesterol Efflux

  • Genetics (AJ Marian, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Plasma levels of high-density lipoprotein cholesterol (HDL-C) show an inverse association with coronary heart disease (CHD). As a biological trait, HDL-C is strongly genetically determined, with a heritability index ranging from 40 % to 60 %. HDL represents an appealing therapeutic target due to its beneficial pleiotropic effects in preventing CHD. This review focuses on the genetic basis of cellular cholesterol efflux, the rate-limiting step in HDL biogenesis. There are several monogenic disorders (e.g., Tangier disease, caused by mutations within ABCA1) affecting HDL biogenesis. Importantly, many disorders of cellular cholesterol homeostasis cause a reduced HDL-C. We integrate information from family studies and linkage analyses with that derived from genome-wide association studies (GWAS) and review the recent identification of micro-RNAs (miRNA) involved in cellular cholesterol metabolism. The identification of genomic pathways related to HDL may help pave the way for novel therapeutic approaches to promote cellular cholesterol efflux as a therapeutic modality to prevent atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Frikke-Schmidt R, Nordestgaard BG, Stene MC, Sethi AA, Remaley AT, Schnohr P, Grande P, Tybjaerg-Hansen A. Association of loss-of-function mutations in the ABCA1 gene with high-density lipoprotein cholesterol levels and risk of ischemic heart disease. JAMA. 2008;299:2524–32.

    Article  PubMed  CAS  Google Scholar 

  2. Asztalos BF, Tani M, Schaefer EJ. Metabolic and functional relevance of HDL subspecies. Curr Opin Lipidol. 2011;22:176–85.

    Article  PubMed  CAS  Google Scholar 

  3. Assmann G, Nofer JR. Atheroprotective effects of high-density lipoproteins. Annu Rev Med. 2003;54:321–41.

    Article  PubMed  CAS  Google Scholar 

  4. Iatan I, Alrasadi K, Ruel I, Alwaili K, Genest J. Effect of ABCA1 mutations on risk for myocardial infarction. Curr Atheroscler Rep. 2008;10:413–26.

    Article  PubMed  CAS  Google Scholar 

  5. Zannis VI, Chroni A, Krieger M. Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL. J Mol Med (Berl). 2006;84:276–94.

    Article  CAS  Google Scholar 

  6. Devries-Seimon T, Li Y, Yao PM, Stone E, Wang Y, Davis RJ, Flavell R, Tabas I. Cholesterol-induced macrophage apoptosis requires ER stress pathways and engagement of the type A scavenger receptor. J Cell Biol. 2005;171:61–73.

    Article  PubMed  CAS  Google Scholar 

  7. Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, Abela GS, Franchi L, Nunez G, Schnurr M, Espevik T, Lien E, Fitzgerald KA, Rock KL, Moore KJ, Wright SD, Hornung V, Latz E. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464:1357–61.

    Article  PubMed  CAS  Google Scholar 

  8. Rajamaki K, Lappalainen J, Oorni K, Valimaki E, Matikainen S, Kovanen PT, Eklund KK. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLoS One. 2010;5:e11765.

    Article  PubMed  Google Scholar 

  9. Okazaki H, Igarashi M, Nishi M, Sekiya M, Tajima M, Takase S, Takanashi M, Ohta K, Tamura Y, Okazaki S, Yahagi N, Ohashi K, Amemiya-Kudo M, Nakagawa Y, Nagai R, Kadowaki T, Osuga J, Ishibashi S. Identification of neutral cholesterol ester hydrolase, a key enzyme removing cholesterol from macrophages. J Biol Chem. 2008;283:33357–64.

    Article  PubMed  CAS  Google Scholar 

  10. Sekiya M, Osuga J, Igarashi M, Okazaki H, Ishibashi S. The role of neutral cholesterol ester hydrolysis in macrophage foam cells. J Atheroscler Thromb. 2011;18:359–64.

    Article  PubMed  CAS  Google Scholar 

  11. Quiroga AD, Lehner R. Role of endoplasmic reticulum neutral lipid hydrolases. Trends Endocrinol Metab. 2011;22:218–25.

    Article  PubMed  CAS  Google Scholar 

  12. Buchebner M, Pfeifer T, Rathke N, Chandak PG, Lass A, Schreiber R, Kratzer A, Zimmermann R, Sattler W, Koefeler H, Frohlich E, Kostner GM, Birner-Gruenberger R, Chiang KP, Haemmerle G, Zechner R, Levak-Frank S, Cravatt B, Kratky D. Cholesteryl ester hydrolase activity is abolished in HSL−/− macrophages but unchanged in macrophages lacking KIAA1363. J Lipid Res. 2010;51:2896–908.

    Article  PubMed  CAS  Google Scholar 

  13. Kratky D. Neutral cholesterol ester hydrolases in macrophages: still a matter of debate. Circ Res. 2011;108:e13.

    Article  PubMed  CAS  Google Scholar 

  14. • Iatan I, Bailey D, Ruel I, Hafiane A, Campbell S, Krimbou L, Genest J: Membrane Microdomains Modulate Ligand Binding Activity of Oligomeric ABCA1 and ApoA-I-Mediated Lipid Removal: Molecular Evidence that ApoA-I Interaction with ABCA1 Activatesthe Phosphatidylcholine Biosynthesis Pathway. J.Lipid Res. 2011. This study examines the nature of ABCA1 as a phospholipid translocase, which in conjunction with the high capacity binding site contributes to the formation of a non-raft membrane domain that facilitates the lipidation of apo AI and the formation of nascent HDL particles.

  15. Brooks-Wilson A, Marcil M, Clee SM, Zhang LH, Roomp K, Van DM, Yu L, Brewer C, Collins JA, Molhuizen HO, Loubser O, Ouelette BF, Fichter K, Ashbourne-Excoffon KJ, Sensen CW, Scherer S, Mott S, Denis M, Martindale D, Frohlich J, Morgan K, Koop B, Pimstone S, Kastelein JJ, Genest Jr J, Hayden MR. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet. 1999;22:336–45.

    Article  PubMed  CAS  Google Scholar 

  16. D.N.Cooper EVBPDSADPKSMEM. The Human Gene Mutation Database at the Institute of Medical Genetics in Cardiff. 2011. Biobase Biological Database.

  17. Candini C, Schimmel AW, Peter J, Bochem AE, Holleboom AG, Vergeer M, Dullaart RP, Dallinga-Thie GM, Hovingh GK, Khoo KL, Fasano T, Bocchi L, Calandra S, Kuivenhoven JA, Motazacker MM. Identification and characterization of novel loss of function mutations in ATP-binding cassette transporter A1 in patients with low plasma high-density lipoprotein cholesterol. Atherosclerosis. 2010;213:492–8.

    Article  PubMed  CAS  Google Scholar 

  18. Alrasadi K, Ruel IL, Marcil M, Genest J. Functional mutations of the ABCA1 gene in subjects of French-Canadian descent with HDL deficiency. Atherosclerosis. 2006;188:281–91.

    Article  PubMed  CAS  Google Scholar 

  19. Oram JF, Heinecke JW. ATP-binding cassette transporter A1: a cell cholesterol exporter that protects against cardiovascular disease. Physiol Rev. 2005;85:1343–72.

    Article  PubMed  CAS  Google Scholar 

  20. Haidar B, Denis M, Krimbou L, Marcil M, Genest Jr J. cAMP induces ABCA1 phosphorylation activity and promotes cholesterol efflux from fibroblasts. J Lipid Res. 2002;43:2087–94.

    Article  PubMed  CAS  Google Scholar 

  21. Denis M, Bissonnette R, Haidar B, Krimbou L, Bouvier M, Genest J. Expression, regulation, and activity of ABCA1 in human cell lines. Mol Genet Metab. 2003;78:265–74.

    Article  PubMed  CAS  Google Scholar 

  22. Chen X, Zhao Y, Guo Z, Zhou L, Okoro EU, Yang H. Transcriptional regulation of ATP-binding cassette transporter A1 expression by a novel signaling pathway. J Biol Chem. 2011;286:8917–23.

    Article  PubMed  CAS  Google Scholar 

  23. Basford JE, Wancata L, Hofmann SM, Silva RA, Davidson WS, Howles PN, Hui DY. Hepatic deficiency of low density lipoprotein receptor-related protein-1 reduces high density lipoprotein secretion and plasma levels in mice. J Biol Chem. 2011;286:13079–87.

    Article  PubMed  CAS  Google Scholar 

  24. Sorci-Thomas MG, Thomas MJ. The effects of altered apolipoprotein A-I structure on plasma HDL concentration. Trends Cardiovasc Med. 2002;12:121–8.

    Article  PubMed  CAS  Google Scholar 

  25. Dastani Z, Dangoisse C, Boucher B, Desbiens K, Krimbou L, Dufour R, Hegele RA, Pajukanta P, Engert JC, Genest J, Marcil M. A novel nonsense apolipoprotein A-I mutation (apoA-I(E136X)) causes low HDL cholesterol in French Canadians. Atherosclerosis. 2006;185:127–36.

    Article  PubMed  CAS  Google Scholar 

  26. Sirtori CR, Calabresi L, Franceschini G, Baldassarre D, Amato M, Johansson J, Salvetti M, Monteduro C, Zulli R, Muiesan ML, Agabiti-Rosei E. Cardiovascular status of carriers of the apolipoprotein A-I(Milano) mutant: the Limone sul Garda study. Circulation. 2001;103:1949–54.

    PubMed  CAS  Google Scholar 

  27. •• Teslovich TM, Musunuru K, Smith AV et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 2010, 466:707–713. This is a significant genome-wide association study identifying 95 lipid-associated loci in 100,000 individuals of European ancestry, 59 of which showed, for the first time, a genome-wide significant association with lipid traits.

    Article  PubMed  CAS  Google Scholar 

  28. Davidson WS, Silva RA. Apolipoprotein structural organization in high density lipoproteins: belts, bundles, hinges and hairpins. Curr Opin Lipidol. 2005;16:295–300.

    Article  PubMed  CAS  Google Scholar 

  29. Thomas MJ, Bhat S, Sorci-Thomas MG. Three-dimensional models of HDL apoA-I: implications for its assembly and function. J Lipid Res. 2008;49:1875–83.

    Article  PubMed  CAS  Google Scholar 

  30. Wu Z, Gogonea V, Lee X, Wagner MA, Li XM, Huang Y, Undurti A, May RP, Haertlein M, Moulin M, Gutsche I, Zaccai G, Didonato JA, Hazen SL. Double superhelix model of high density lipoprotein. J Biol Chem. 2009;284:36605–19.

    Article  PubMed  CAS  Google Scholar 

  31. Huang R, Silva RA, Jerome WG, Kontush A, Chapman MJ, Curtiss LK, Hodges TJ, Davidson WS. Apolipoprotein A-I structural organization in high-density lipoproteins isolated from human plasma. Nat Struct Mol Biol. 2011;18:416–22.

    Article  PubMed  CAS  Google Scholar 

  32. • Alexander ET, Vedhachalam C, Sankaranarayanan S, Llera-Moya M, Rothblat GH, Rader DJ, Phillips MC: Influence of apolipoprotein A-I domain structure on macrophage reverse cholesterol transport in mice. Arterioscler.Thromb.Vasc.Biol. 2011, 31:320–327. This study examines the properties of the tertiary structure domains of apo AI and its influence on apo AI functionality in the reverse cholesterol pathway.

    Article  PubMed  CAS  Google Scholar 

  33. Lyssenko NN, Hata M, Dhanasekaran P, Nickel M, Nguyen D, Chetty PS, Saito H, Lund-Katz S, Phillips MC: Influence of C-terminal alpha-helix hydrophobicity and aromatic amino acid content on apolipoprotein A-I functionality. Biochim Biophys Acta 2011.

  34. Bergt C, Pennathur S, Fu X, Byun J, O’Brien K, McDonald TO, Singh P, Anantharamaiah GM, Chait A, Brunzell J, Geary RL, Oram JF, Heinecke JW. The myeloperoxidase product hypochlorous acid oxidizes HDL in the human artery wall and impairs ABCA1-dependent cholesterol transport. Proc Natl Acad Sci U S A. 2004;101:13032–7.

    Article  PubMed  CAS  Google Scholar 

  35. Shao B, Oda MN, Bergt C, Fu X, Green PS, Brot N, Oram JF, Heinecke JW. Myeloperoxidase impairs ABCA1-dependent cholesterol efflux through methionine oxidation and site-specific tyrosine chlorination of apolipoprotein A-I. J Biol Chem. 2006;281:9001–4.

    Article  PubMed  CAS  Google Scholar 

  36. Shao B, Tang C, Heinecke JW, Oram JF. Oxidation of apolipoprotein A-I by myeloperoxidase impairs the initial interactions with ABCA1 required for signaling and cholesterol export. J Lipid Res. 2010;51:1849–58.

    Article  PubMed  CAS  Google Scholar 

  37. Gao X, Gu H, Li G, Rye KA, Zhang DW: Identification of an amino acid residue in ATP-binding cassette transport G1 critical for mediating cholesterol efflux. Biochim Biophys Acta 2011.

  38. Klucken J, Buchler C, Orso E, Kaminski WE, Porsch-Ozcurumez M, Liebisch G, Kapinsky M, Diederich W, Drobnik W, Dean M, Allikmets R, Schmitz G. ABCG1 (ABC8), the human homolog of the Drosophila white gene, is a regulator of macrophage cholesterol and phospholipid transport. Proc Natl Acad Sci U S A. 2000;97:817–22.

    Article  PubMed  CAS  Google Scholar 

  39. •• Rayner KJ, Suarez Y, Davalos A, Parathath S, Fitzgerald ML, Tamehiro N, Fisher EA, Moore KJ, Fernandez-Hernando C: MiR-33 contributes to the regulation of cholesterol homeostasis. Science 2010, 328:1570–1573. This article describes the role of miR-33 as it appears in both HDL biogenesis and cellular cholesterol efflux.

    Article  PubMed  CAS  Google Scholar 

  40. Marquart TJ, Allen RM, Ory DS, Baldan A. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci U S A. 2010;107:12228–32.

    Article  PubMed  CAS  Google Scholar 

  41. Shridas P, Bailey WM, Gizard F, Oslund RC, Gelb MH, Bruemmer D, Webb NR. Group X secretory phospholipase A2 negatively regulates ABCA1 and ABCG1 expression and cholesterol efflux in macrophages. Arterioscler Thromb Vasc Biol. 2010;30:2014–21.

    Article  PubMed  CAS  Google Scholar 

  42. Terasaka N, Yu S, Yvan-Charvet L, Wang N, Mzhavia N, Langlois R, Pagler T, Li R, Welch CL, Goldberg IJ, Tall AR. ABCG1 and HDL protect against endothelial dysfunction in mice fed a high-cholesterol diet. J Clin Invest. 2008;118:3701–13.

    Article  PubMed  CAS  Google Scholar 

  43. Terasaka N, Westerterp M, Koetsveld J, Fernandez-Hernando C, Yvan-Charvet L, Wang N, Sessa WC, Tall AR. ATP-binding cassette transporter G1 and high-density lipoprotein promote endothelial NO synthesis through a decrease in the interaction of caveolin-1 and endothelial NO synthase. Arterioscler Thromb Vasc Biol. 2010;30:2219–25.

    Article  PubMed  CAS  Google Scholar 

  44. Whetzel AM, Sturek JM, Nagelin MH, Bolick DT, Gebre AK, Parks JS, Bruce AC, Skaflen MD, Hedrick CC. ABCG1 deficiency in mice promotes endothelial activation and monocyte-endothelial interactions. Arterioscler Thromb Vasc Biol. 2010;30:809–17.

    Article  PubMed  CAS  Google Scholar 

  45. Sturek JM, Castle JD, Trace AP, Page LC, Castle AM, Evans-Molina C, Parks JS, Mirmira RG, Hedrick CC. An intracellular role for ABCG1-mediated cholesterol transport in the regulated secretory pathway of mouse pancreatic beta cells. J Clin Invest. 2010;120:2575–89.

    Article  PubMed  CAS  Google Scholar 

  46. Fryirs MA, Barter PJ, Appavoo M, Tuch BE, Tabet F, Heather AK, Rye KA. Effects of high-density lipoproteins on pancreatic beta-cell insulin secretion. Arterioscler Thromb Vasc Biol. 2010;30:1642–8.

    Article  PubMed  CAS  Google Scholar 

  47. Lu KY, Ching LC, Su KH, Yu YB, Kou YR, Hsiao SH, Huang YC, Chen CY, Cheng LC, Pan CC, Lee TS. Erythropoietin suppresses the formation of macrophage foam cells: role of liver X receptor alpha. Circulation. 2010;121:1828–37.

    Article  PubMed  CAS  Google Scholar 

  48. Aron-Wisnewsky J, Julia Z, Poitou C, Bouillot JL, Basdevant A, Chapman MJ, Clement K, Guerin M. Effect of bariatric surgery-induced weight loss on SR-BI-, ABCG1-, and ABCA1-mediated cellular cholesterol efflux in obese women. J Clin Endocrinol Metab. 2011;96:1151–9.

    Article  PubMed  CAS  Google Scholar 

  49. Yamashita M, Tamasawa N, Matsuki K, Tanabe J, Murakami H, Matsui J, Suda T. Insulin suppresses HDL-mediated cholesterol efflux from macrophages through inhibition of neutral cholesteryl ester hydrolase and ATP-binding cassette transporter G1 expressions. J Atheroscler Thromb. 2010;17:1183–9.

    Article  PubMed  CAS  Google Scholar 

  50. Choi HY, Karten B, Chan T, Vance JE, Greer WL, Heidenreich RA, Garver WS, Francis GA. Impaired ABCA1-dependent lipid efflux and hypoalphalipoproteinemia in human Niemann-Pick type C disease. J Biol Chem. 2003;278:32569–77.

    Article  PubMed  CAS  Google Scholar 

  51. Tangemo C, Weber D, Theiss S, Mengel E, Runz H. Niemann-Pick Type C disease: characterizing lipid levels in patients with variant lysosomal cholesterol storage. J Lipid Res. 2011;52:813–25.

    Article  PubMed  Google Scholar 

  52. Garver WS, Jelinek D, Meaney FJ, Flynn J, Pettit KM, Shepherd G, Heidenreich RA, Vockley CM, Castro G, Francis GA. The National Niemann-Pick Type C1 Disease Database: correlation of lipid profiles, mutations, and biochemical phenotypes. J Lipid Res. 2010;51:406–15.

    Article  PubMed  CAS  Google Scholar 

  53. Devlin C, Pipalia NH, Liao X, Schuchman EH, Maxfield FR, Tabas I. Improvement in lipid and protein trafficking in Niemann-Pick C1 cells by correction of a secondary enzyme defect. Traffic. 2010;11:601–15.

    Article  PubMed  CAS  Google Scholar 

  54. Pipalia NH, Cosner CC, Huang A, Chatterjee A, Bourbon P, Farley N, Helquist P, Wiest O, Maxfield FR. Histone deacetylase inhibitor treatment dramatically reduces cholesterol accumulation in Niemann-Pick type C1 mutant human fibroblasts. Proc Natl Acad Sci U S A. 2011;108:5620–5.

    Article  PubMed  CAS  Google Scholar 

  55. Bowden KL, Bilbey NJ, Bilawchuk LM, Boadu E, Sidhu R, Ory DS, Du H, Chan T, Francis GA. Lysosomal acid lipase deficiency impairs regulation of ABCA1 gene and formation of high density lipoproteins in cholesteryl ester storage disease. J Biol Chem. 2011;286:30624–35.

    Article  PubMed  CAS  Google Scholar 

  56. Lee CY, Krimbou L, Vincent J, Bernard C, Larramee P, Genest Jr J, Marcil M. Compound heterozygosity at the sphingomyelin phosphodiesterase-1 (SMPD1) gene is associated with low HDL cholesterol. Hum Genet. 2003;112:552–62.

    PubMed  Google Scholar 

  57. Lee CY, Lesimple A, Denis M, Vincent J, Larsen A, Mamer O, Krimbou L, Genest J, Marcil M. Increased sphingomyelin content impairs HDL biogenesis and maturation in human Niemann-Pick disease type B. J Lipid Res. 2006;47:622–32.

    Article  PubMed  CAS  Google Scholar 

  58. Trigatti B, Rigotti A, Krieger M. The role of the high-density lipoprotein receptor SR-BI in cholesterol metabolism. Curr Opin Lipidol. 2000;11:123–31.

    Article  PubMed  CAS  Google Scholar 

  59. Krieger M. Charting the fate of the ‘good cholesterol’: identification and characterization of the high-density lipoprotein receptor SR-B1. Annu Rev Biochem. 1999;68:523–58.

    Article  PubMed  CAS  Google Scholar 

  60. Covey SD, Krieger M, Wang W, Penman M, Trigatti BL. Scavenger receptor class B type I-mediated protection against atherosclerosis in LDL receptor-negative mice involves its expression in bone marrow-derived cells. Arterioscler Thromb Vasc Biol. 2003;23:1589–94.

    Article  PubMed  CAS  Google Scholar 

  61. Ji Y, Jian B, Wang N, Sun Y, Moya ML, Phillips MC, Rothblat GH, Swaney JB, Tall AR. Scavenger receptor BI promotes high density lipoprotein-mediated cellular cholesterol efflux. J Biol Chem. 1997;272:20982–5.

    Article  PubMed  CAS  Google Scholar 

  62. Van EM, Bos IS, Hildebrand RB, Van Rij BT, Van Berkel TJ. Dual role for scavenger receptor class B, type I on bone marrow-derived cells in atherosclerotic lesion development. Am J Pathol. 2004;165:785–94.

    Article  Google Scholar 

  63. Zhang Y, Da Silva JR, Reilly M, Billheimer JT, Rothblat GH, Rader DJ. Hepatic expression of scavenger receptor class B type I (SR-BI) is a positive regulator of macrophage reverse cholesterol transport in vivo. J Clin Invest. 2005;115:2870–4.

    Article  PubMed  CAS  Google Scholar 

  64. Leiva A, Verdejo H, Benitez ML, Martinez A, Busso D, Rigotti A. Mechanisms regulating hepatic SR-BI expression and their impact on HDL metabolism. Atherosclerosis. 2011;217:299–307.

    Article  PubMed  CAS  Google Scholar 

  65. Acton S, Osgood D, Donoghue M, Corella D, Pocovi M, Cenarro A, Mozas P, Keilty J, Squazzo S, Woolf EA, Ordovas JM. Association of polymorphisms at the SR-BI gene locus with plasma lipid levels and body mass index in a white population. Arterioscler Thromb Vasc Biol. 1999;19:1734–43.

    Article  PubMed  CAS  Google Scholar 

  66. Hsu LA, Ko YL, Wu S, Teng MS, Peng TY, Chen CF, Chen CF, Lee YS. Association between a novel 11-base pair deletion mutation in the promoter region of the scavenger receptor class B type I gene and plasma HDL cholesterol levels in Taiwanese Chinese. Arterioscler Thromb Vasc Biol. 2003;23:1869–74.

    Article  PubMed  CAS  Google Scholar 

  67. Vergeer M, Korporaal SJ, Franssen R, Meurs I, Out R, Hovingh GK, Hoekstra M, Sierts JA, Dallinga-Thie GM, Motazacker MM, Holleboom AG, Van Berkel TJ, Kastelein JJ, Van EM, Kuivenhoven JA. Genetic variant of the scavenger receptor BI in humans. N Engl J Med. 2011;364:136–45.

    Article  PubMed  CAS  Google Scholar 

  68. Soccio RE, Breslow JL. StAR-related lipid transfer (START) proteins: mediators of intracellular lipid metabolism. J Biol Chem. 2003;278:22183–6.

    Article  PubMed  CAS  Google Scholar 

  69. Charman M, Kennedy BE, Osborne N, Karten B. MLN64 mediates egress of cholesterol from endosomes to mitochondria in the absence of functional Niemann-Pick Type C1 protein. J Lipid Res. 2010;51:1023–34.

    Article  PubMed  CAS  Google Scholar 

  70. Rigotti A, Cohen DE, Zanlungo S. STARTing to understand MLN64 function in cholesterol transport. J Lipid Res. 2010;51:2015–7.

    Article  PubMed  CAS  Google Scholar 

  71. Borthwick F, Allen AM, Taylor JM, Graham A. Overexpression of STARD3 in human monocyte/macrophages induces an anti-atherogenic lipid phenotype. Clin Sci (Lond). 2010;119:265–72.

    Article  CAS  Google Scholar 

  72. Shawahna R, Uchida Y, Decleves X, Ohtsuki S, Yousif S, Dauchy S, Jacob A, Chassoux F, Daumas-Duport C, Couraud PO, Terasaki T, Scherrmann JM. Transcriptomic and quantitative proteomic analysis of transporters and drug metabolizing enzymes in freshly isolated human brain microvessels. Mol Pharm. 2011;8:1332–41.

    Article  PubMed  CAS  Google Scholar 

  73. Kim WS, Weickert CS, Garner B. Role of ATP-binding cassette transporters in brain lipid transport and neurological disease. J Neurochem. 2008;104:1145–66.

    Article  PubMed  CAS  Google Scholar 

  74. Shukla A, Hillegass JM, MacPherson MB, Beuschel SL, Vacek PM, Pass HI, Carbone M, Testa JR, Mossman BT. Blocking of ERK1 and ERK2 sensitizes human mesothelioma cells to doxorubicin. Mol Cancer. 2010;9:314.

    Article  PubMed  CAS  Google Scholar 

  75. Dastani Z, Pajukanta P, Marcil M, Rudzicz N, Ruel I, Bailey SD, Lee JC, Lemire M, Faith J, Platko J, Rioux J, Hudson TJ, Gaudet D, Engert JC, Genest J. Fine mapping and association studies of a high-density lipoprotein cholesterol linkage region on chromosome 16 in French-Canadian subjects. Eur J Hum Genet. 2010;18:342–7.

    Article  PubMed  CAS  Google Scholar 

  76. Dastani Z, Quiogue L, Plaisier C, Engert JC, Marcil M, Genest J, Pajukanta P. Evidence for a gene influencing high-density lipoprotein cholesterol on chromosome 4q31.21. Arterioscler Thromb Vasc Biol. 2006;26:392–7.

    Article  PubMed  CAS  Google Scholar 

  77. Iatan I, Dastani Z, Do R, Weissglas-Volkov D, Ruel I, Lee JC, Huertas-Vazquez A, Taskinen MR, Prat A, Seidah NG, Pajukanta P, Engert JC, Genest J. Genetic variation at the proprotein convertase subtilisin/kexin type 5 gene modulates high-density lipoprotein cholesterol levels. Circ Cardiovasc Genet. 2009;2:467–75.

    Article  PubMed  CAS  Google Scholar 

  78. •• Weissglas-Volkov D, Pajukanta P: Genetic causes of high and low serum HDL-cholesterol. J.Lipid Res. 2010, 51:2032–2057. This is an in-depth review of the genetic basis of HDL-C.

    Article  PubMed  CAS  Google Scholar 

  79. Lee JC, Weissglas-Volkov D, Kyttala M, Dastani Z, Cantor RM, Sobel EM, Plaisier CL, Engert JC, van Greevenbroek MM, Kane JP, Malloy MJ, Pullinger CR, Huertas-Vazquez A, Aguilar-Salinas CA, Tusie-Luna T, de Bruin TW, Aouizerat BE, van der Kallen CC, Croce CM, Aqeilan RI, Marcil M, Viikari JS, Lehtimaki T, Raitakari OT, Kuusisto J, Laakso M, Taskinen MR, Genest J, Pajukanta P. WW-domain-containing oxidoreductase is associated with low plasma HDL-C levels. Am J Hum Genet. 2008;83:180–92.

    Article  PubMed  CAS  Google Scholar 

  80. Horie T, Ono K, Horiguchi M, Nishi H, Nakamura T, Nagao K, Kinoshita M, Kuwabara Y, Marusawa H, Iwanaga Y, Hasegawa K, Yokode M, Kimura T, Kita T. MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo. Proc Natl Acad Sci U S A. 2010;107:17321–6.

    Article  PubMed  CAS  Google Scholar 

  81. Ramirez CM, Davalos A, Goedeke L, Salerno AG, Warrier N, Cirera-Salinas D, Suarez Y, Fernandez-Hernando C: MicroRNA-758 Regulates Cholesterol Efflux Through Posttranscriptional Repression of ATP-Binding Cassette Transporter A1. Arterioscler Thromb Vasc Biol. 2011.

  82. Rayner KJ, Sheedy FJ, Esau CC, Hussain FN, Temel RE, Parathath S, van Gils JM, Rayner AJ, Chang AN, Suarez Y, Fernandez-Hernando C, Fisher EA, Moore KJ. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Invest. 2011;121:2921–31.

    Article  PubMed  CAS  Google Scholar 

  83. Kim J, Yoon H, Ramirez CM, Lee SM, Hoe HS, Fernandez-Hernando C, Kim J: miR-106b impairs cholesterol efflux and increases Abeta levels by repressing ABCA1 expression. Exp Neurol. 2011.

  84. 1000 Genomes. http://www.1000genomes.org/. Accessed December 2011

  85. •• Musunuru K, Pirruccello JP, Do R, Peloso GM, Guiducci C, Sougnez C, Garimella KV, Fisher S, Abreu J, Barry AJ, Fennell T, Banks E, Ambrogio L, Cibulskis K, Kernytsky A, Gonzalez E, Rudzicz N, Engert JC, DePristo MA, Daly MJ, Cohen JC, Hobbs HH, Altshuler D, Schonfeld G, Gabriel SB, Yue P, Kathiresan S: Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N Engl J Med. 2010, 363:2220–2227. This article provides a remarkable example of the power of exome-wide sequencing for the identification of genetic defects.

    Article  PubMed  CAS  Google Scholar 

  86. NCBI: National Center for Biotechnology Information. http://www.ncbi.nlm.nih.gov/. Accessed December 2011

Download references

Disclosure

No conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Genest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iatan, I., Palmyre, A., Alrasheed, S. et al. Genetics of Cholesterol Efflux. Curr Atheroscler Rep 14, 235–246 (2012). https://doi.org/10.1007/s11883-012-0247-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-012-0247-y

Keywords

Navigation