Skip to main content

Advertisement

Log in

Ovarian Hormones and Drug Abuse

  • Women's Mental Health (D Rubinow, Section Editor)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

There are significant gender differences in course, symptomology, and treatment of substance use disorders. In general data from clinical and preclinical studies of substance use disorders suggest that women are more vulnerable than men to the deleterious consequences of drug use at every phase of the addiction process. In addition data from epidemiologic studies suggest that the gender gap in the prevalence of substance use is narrowing particularly among adolescence. Therefore, understanding the role of estrogen and progesterone in mediating responses to drugs of abuse is of critical importance to women’s health. In this review we will discuss findings from clinical and preclinical studies of 1) reproductive cycle phase; 2) endogenous ovarian hormones; and 3) hormone replacement on responses to stimulants, nicotine, alcohol, opioids, and marijuana. In addition, we discuss data from recent studies that have advanced our understanding of the neurobiologic mechanisms that interact with estrogen and progesterone to mediate drug-seeking behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. McCance-Katz EF, Carroll KM, Rounsaville BJ. Gender differences in treatment-seeking cocaine abusers—implications for treatment and prognosis. Am J Addict. 1999;8(4):300–11.

    Article  PubMed  CAS  Google Scholar 

  2. Anglin MD, Hser YI, McGlothlin WH. Sex differences in addict careers. 2. Becoming addicted. Am J Drug Alcohol Abuse. 1987;13(1–2):59–71.

    Article  PubMed  CAS  Google Scholar 

  3. Hernandez-Avila CA, Rounsaville BJ, Kranzler HR. Opioid-, cannabis- and alcohol-dependent women show more rapid progression to substance abuse treatment. Drug Alcohol Depend. 2004;74(3):265–72.

    Article  PubMed  CAS  Google Scholar 

  4. Westermeyer J, Boedicker AE. Course, severity, and treatment of substance abuse among women versus men. Am J Drug Alcohol Abuse. 2000;26(4):523–35.

    Article  PubMed  CAS  Google Scholar 

  5. Brady KT et al. Gender differences in substance use disorders. Am J Psychiatry. 1993;150(11):1707–11.

    PubMed  CAS  Google Scholar 

  6. Lynch WJ, Carroll ME. Reinstatement of cocaine self-administration in rats: sex differences. Psychopharmacology (Berl). 2000;148(2):196–200.

    Article  CAS  Google Scholar 

  7. Lynch WJ. Acquisition and maintenance of cocaine self-administration in adolescent rats: effects of sex and gonadal hormones. Psychopharmacology (Berl). 2008;197(2):237–46.

    Article  CAS  Google Scholar 

  8. Roth ME, Carroll ME. Sex differences in the escalation of intravenous cocaine intake following long- or short-access to cocaine self-administration. Pharmacol Biochem Behav. 2004;78(2):199–207.

    Article  PubMed  CAS  Google Scholar 

  9. Kerstetter KA et al. Protracted time-dependent increases in cocaine-seeking behavior during cocaine withdrawal in female relative to male rats. Psychopharmacology (Berl). 2008;198(1):63–75.

    Article  CAS  Google Scholar 

  10. Anker JJ, Carroll ME. Sex differences in the effects of allopregnanolone on yohimbine-induced reinstatement of cocaine seeking in rats. Drug Alcohol Depend. 2010;107(2–3):264–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Buffalari DM et al. Corticotrophin releasing factor (CRF) induced reinstatement of cocaine seeking in male and female rats. Physiol Behav. 2012;105(2):209–14.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Freeman ME. The neuroendocrine control of the ovarian cycle of the rat. In: Knobil E, Neill JD, editors. The physiology of reproduction. New York: Raven Press; 1994. p. 613–58.

    Google Scholar 

  13. Evans SM, Haney M, Foltin RW. The effects of smoked cocaine during the follicular and luteal phases of the menstrual cycle in women. Psychopharmacology (Berl). 2002;159(4):397–406.

    Article  CAS  Google Scholar 

  14. Sofuoglu M et al. Sex and menstrual cycle differences in the subjective effects from smoked cocaine in humans. Exp Clin Psychopharmacol. 1999;7(3):274–83.

    Article  PubMed  CAS  Google Scholar 

  15. Justice AJ, de Wit H. Acute effects of d-amphetamine during the follicular and luteal phases of the menstrual cycle in women. Psychopharmacology (Berl). 1999;145(1):67–75.

    Article  CAS  Google Scholar 

  16. White TL, Justice AJ, de Wit H. Differential subjective effects of D-amphetamine by gender, hormone levels and menstrual cycle phase. Pharmacol Biochem Behav. 2002;73(4):729–41.

    Article  PubMed  CAS  Google Scholar 

  17. Feltenstein MW, See RE. Plasma progesterone levels and cocaine-seeking in freely cycling female rats across the estrous cycle. Drug Alcohol Depend. 2007;89(2–3):183–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Lynch WJ et al. Role of estrogen in the acquisition of intravenously self-administered cocaine in female rats. Pharmacol Biochem Behav. 2001;68(4):641–6.

    Article  PubMed  CAS  Google Scholar 

  19. Chen HH et al. Methamphetamine-induced conditioned place preference is facilitated by estradiol pretreatment in female mice. Chin J Physiol. 2003;46(4):169–74.

    PubMed  CAS  Google Scholar 

  20. Kippin TE et al. Potentiation of cocaine-primed reinstatement of drug seeking in female rats during estrus. Psychopharmacology (Berl). 2005;182(2):245–52.

    Article  CAS  Google Scholar 

  21. Lukas SE et al. Sex differences in plasma cocaine levels and subjective effects after acute cocaine administration in human volunteers. Psychopharmacology (Berl). 1996;125(4):346–54.

    Article  CAS  Google Scholar 

  22. Collins SL et al. Intranasal cocaine in humans: effects of sex and menstrual cycle. Pharmacol Biochem Behav. 2007;86(1):117–24.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Mendelson JH et al. Cocaine pharmacokinetics in men and in women during the follicular and luteal phases of the menstrual cycle. Neuropsychopharmacology. 1999;21(2):294–303.

    Article  PubMed  CAS  Google Scholar 

  24. Sinha R et al. Sex steroid hormones, stress response, and drug craving in cocaine-dependent women: implications for relapse susceptibility. Exp Clin Psychopharmacol. 2007;15(5):445–52.

    Article  PubMed  CAS  Google Scholar 

  25. Fox HC et al. Altered levels of sex and stress steroid hormones assessed daily over a 28-day cycle in early abstinent cocaine-dependent females. Psychopharmacology (Berl). 2008;195(4):527–36.

    Article  CAS  Google Scholar 

  26. Evans SM, Foltin RW. Exogenous progesterone attenuates the subjective effects of smoked cocaine in women, but not in men. Neuropsychopharmacology. 2006;31(3):659–74.

    Article  PubMed  CAS  Google Scholar 

  27. Sofuoglu M, Babb DA, Hatsukami DK. Effects of progesterone treatment on smoked cocaine response in women. Pharmacol Biochem Behav. 2002;72(1–2):431–5.

    Article  PubMed  CAS  Google Scholar 

  28. Sofuoglu M, Mitchell E, Kosten TR. Effects of progesterone treatment on cocaine responses in male and female cocaine users. Pharmacol Biochem Behav. 2004;78(4):699–705.

    Article  PubMed  CAS  Google Scholar 

  29. Fox HC et al. The effects of exogenous progesterone on drug craving and stress arousal in cocaine dependence: impact of gender and cue type. Psychoneuroendocrinology. 2013;38(9):1532–44. Relapse rates are high among cocaine-dependent individuals. To our knowldege this is the first study to examine the efficacy of exogenous progesterone on inhibiting responses to triggers of relapse in a cohort of cocaine-dependent individuals.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Sofuoglu M et al. Progesterone effects on cocaine use in male cocaine users maintained on methadone: a randomized, double-blind, pilot study. Exp Clin Psychopharmacol. 2007;15(5):453–60.

    Article  PubMed  CAS  Google Scholar 

  31. Holtz NA et al. Reinstatement of methamphetamine seeking in male and female rats treated with modafinil and allopregnanolone. Drug Alcohol Depend. 2012;120(1–3):233–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Ramoa CP et al. Estradiol as a mechanism for sex differences in the development of an addicted phenotype following extended access cocaine self-administration. Neuropsychopharmacology. 2013;38(9):1698–705.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Ramoa CP et al. Diminished role of dopamine D1-receptor signaling with the development of an addicted phenotype in rats. Biol Psychiatry. 2014;76(1):8–14. Data from this study suggest that estrogen plays an important role in compulisve drug seeking behavior. In addition, although the dopamine has been implicated in establishing the initial reinforcing effects of drugs of abuse, data from this study suggest that the effects of estrogen on compulsive drug seeking behavior are independent of the dopamine system.

    Article  PubMed  CAS  Google Scholar 

  34. Kalivas PW, Volkow ND. The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry. 2005;162(8):1403–13.

    Article  PubMed  Google Scholar 

  35. Meitzen J, Mermelstein PG. Estrogen receptors stimulate brain region specific metabotropic glutamate receptors to rapidly initiate signal transduction pathways. J Chem Neuroanat. 2011;42(4):236–41.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Peterson BM, Mermelstein PG, Meisel RL. Estradiol mediates dendritic spine plasticity in the nucleus accumbens core through activation of mGluR5. Brain Struct Funct. 2014;31.

  37. Martinez LA et al. Estradiol facilitation of cocaine-induced locomotor sensitization in female rats requires activation of mGluR5. Behav Brain Res. 2014;271:39–42.

    Article  PubMed  CAS  Google Scholar 

  38. Allen SS et al. Withdrawal and pre-menstrual symptomatology during the menstrual cycle in short-term smoking abstinence: effects of menstrual cycle on smoking abstinence. Nicotine Tob Res. 1999;1(2):129–42.

    Article  PubMed  CAS  Google Scholar 

  39. Allen SS et al. Effects of transdermal nicotine on craving, withdrawal and premenstrual symptomatology in short-term smoking abstinence during different phases of the menstrual cycle. Nicotine Tob Res. 2000;2(3):231–41.

    Article  PubMed  CAS  Google Scholar 

  40. Franklin TR et al. Retrospective study: influence of menstrual cycle on cue-induced cigarette craving. Nicotine Tob Res. 2004;6(1):171–5.

    Article  PubMed  Google Scholar 

  41. Marks JL, Pomerleau CS, Pomerleau OF. Effects of menstrual phase on reactivity to nicotine. Addict Behav. 1999;24(1):127–34.

    Article  PubMed  CAS  Google Scholar 

  42. Pomerleau CS et al. Effects of nicotine abstinence and menstrual phase on task performance. Addict Behav. 1994;19(4):357–62.

    Article  PubMed  CAS  Google Scholar 

  43. Schiller CE et al. Association between ovarian hormones and smoking behavior in women. Exp Clin Psychopharmacol. 2012;20(4):251–7. In general findings from studies of cycle phase, endogenous estrogen and progesterone levels on drug seeking behavior are often conflicting. The results from this study suggest that absolute levels of ovarian hormones may not be sufficient. Rather studies of changes in ovarian hormones over time and/or the ratio of progesterone to estrogen may advance our understanding of the role of ovarian hormones in drug-seeking behavior.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Allen SS, Bade T, Center B, Finstad D, Hatsukami D. Menstrual phase effects on smoking relapse. Addiction. 2008;103(5):809–821. doi:10.1111/j.1360-0443.2008.02146.x.

  45. Lynch WJ. Sex and ovarian hormones influence vulnerability and motivation for nicotine during adolescence in rats. Pharmacol Biochem Behav. 2009;94(1):43–50. doi:10.1016/j.pbb.2009.07.004.

  46. Sofuoglu M, Mooney M. Subjective responses to intravenous nicotine: greater sensitivity in women than in men. Exp Clin Psychopharmacol 2009;17(2):63–69. doi:10.1037/a0015297.

  47. Sofuoglu M, Mouratidis M, Mooney M. Progesterone improves cognitive performance and attenuates smoking urges in abstinent smokers. Psychoneuroendocrinology. 2011;36(1):123–32.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Cepeda-Benito A, Reynoso JT, Erath S. Meta-analysis of the efficacy of nicotine replacement therapy for smoking cessation: differences between men and women. J Consult Clin Psychol. 2004;72(4):712–22.

    Article  PubMed  Google Scholar 

  49. Perkins KA. Smoking cessation in women. Special considerations. CNS Drugs. 2001;15(5):391–411.

    Article  PubMed  CAS  Google Scholar 

  50. Scharf D, Shiffman S. Are there gender differences in smoking cessation, with and without bupropion? Pooled- and meta-analyses of clinical trials of Bupropion SR. Addiction. 2004;99(11):1462–9.

    Article  PubMed  Google Scholar 

  51. King SL, Caldarone BJ, Picciotto MR. Beta2-subunit-containing nicotinic acetylcholine receptors are critical for dopamine-dependent locomotor activation following repeated nicotine administration. Neuropharmacology. 2004;47 Suppl 1:132–9.

    Article  PubMed  CAS  Google Scholar 

  52. Picciotto MR et al. Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature. 1998;391(6663):173–7.

    Article  PubMed  CAS  Google Scholar 

  53. Staley JK et al. Human tobacco smokers in early abstinence have higher levels of beta2* nicotinic acetylcholine receptors than nonsmokers. J Neurosci. 2006;26(34):8707–14.

    Article  PubMed  CAS  Google Scholar 

  54. Cosgrove KP et al. beta2-Nicotinic acetylcholine receptor availability during acute and prolonged abstinence from tobacco smoking. Arch Gen Psychiatry. 2009;66(6):666–76.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Ke L, Lukas RJ. Effects of steroid exposure on ligand binding and functional activities of diverse nicotinic acetylcholine receptor subtypes. J Neurochem. 1996;67(3):1100–12.

    Article  PubMed  CAS  Google Scholar 

  56. Valera S, Ballivet M, Bertrand D. Progesterone modulates a neuronal nicotinic acetylcholine receptor. Proc Natl Acad Sci U S A. 1992;89(20):9949–53.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Cosgrove KP et al. Sex differences in availability of beta2*-nicotinic acetylcholine receptors in recently abstinent tobacco smokers. Arch Gen Psychiatry. 2012;69(4):418–27. Previous studies demonstrate sex differences in treatment responses to nicotine replacementcpe Data from this study offer a potential neurobiologic basis for these differences than may be independent of ovarian hormone status.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Logue PE et al. Effects of ethanol and psychomotor tests on state anxiety: interaction with menstrual cycle in women. Percept Mot Skills. 1981;52(2):643–8.

    Article  PubMed  CAS  Google Scholar 

  59. Sutker PB et al. Acute alcohol intoxication: sex comparisons on pharmacokinetic and mood measures. Alcohol Clin Exp Res. 1987;11(6):507–12.

    Article  PubMed  CAS  Google Scholar 

  60. Evans SM, Levin FR. Response to alcohol in women: role of the menstrual cycle and a family history of alcoholism. Drug Alcohol Depend. 2011;114(1):18–30.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Holdstock L, de Wit H. Effects of ethanol at four phases of the menstrual cycle. Psychopharmacology (Berl). 2000;150(4):374–82.

    Article  CAS  Google Scholar 

  62. Stewart SH et al. Relations between dietary restraint and patterns of alcohol use in young adult women. Psychol Addict Behav. 2000;14(1):77–82.

    Article  PubMed  CAS  Google Scholar 

  63. Khaylis A, Trockel M, Taylor CB. Binge drinking in women at risk for developing eating disorders. Int J Eat Disord. 2009;42(5):409–14.

    Article  PubMed  Google Scholar 

  64. Luce KH et al. Do restrained eaters restrict their caloric intake prior to drinking alcohol? Eat Behav. 2013;14(3):361–5.

    Article  PubMed  Google Scholar 

  65. DiMatteo J, Reed SC, Evans SM. Alcohol consumption as a function of dietary restraint and the menstrual cycle in moderate/heavy ("at-risk") female drinkers. Eat Behav. 2012;13(3):285–8.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Torres OV et al. Female rats display enhanced rewarding effects of ethanol that are hormone dependent. Alcohol Clin Exp Res. 2014;38(1):108–15.

    Article  PubMed  CAS  Google Scholar 

  67. Roberts AJ et al. Estrous cycle effects on operant responding for ethanol in female rats. Alcohol Clin Exp Res. 1998;22(7):1564–9.

    Article  PubMed  CAS  Google Scholar 

  68. Kerstetter KA et al. Sex and estrous cycle differences in cocaine-induced approach-avoidance conflict. Addict Biol. 2013;18(2):222–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  69. Substance Abuse and Mental Health Services Administration, Non medical use of prescription pain relievers. 2004.

  70. Substance Abuse and Mental Health Services Administration, Results from the 2012 National Survey on Drug Use and Health: Summary of National Findings. 2013: Rockville.

  71. Andersson HI et al. Chronic pain in a geographically defined general population: studies of differences in age, gender, social class, and pain localization. Clin J Pain. 1993;9(3):174–82.

    Article  PubMed  CAS  Google Scholar 

  72. Rustoen T et al. Gender differences in chronic pain–findings from a population-based study of Norwegian adults. Pain Manag Nurs. 2004;5(3):105–17.

    Article  PubMed  Google Scholar 

  73. Back SE et al. Comparative profiles of men and women with opioid dependence: results from a national multisite effectiveness trial. Am J Drug Alcohol Abuse. 2011;37(5):313–23.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Sener EB et al. Effects of menstrual cycle on postoperative analgesic requirements, agitation, incidence of nausea and vomiting after gynecological laparoscopy. Gynecol Obstet Invest. 2005;59(1):49–53.

    Article  PubMed  Google Scholar 

  75. Ribeiro-Dasilva MC et al. Evaluation of menstrual cycle effects on morphine and pentazocine analgesia. Pain. 2011;152(3):614–22.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  76. Cicero TJ, Aylward SC, Meyer ER. Gender differences in the intravenous self-administration of mu opiate agonists. Pharmacol Biochem Behav. 2003;74(3):541–9.

    Article  PubMed  CAS  Google Scholar 

  77. Stewart J, Woodside B, Shaham Y. Ovarian hormones do not affect the initiation and maintenance of intravenous self-administration of heroin in the female rat. Psychobiology. 1996;24(2):154–9.

    CAS  Google Scholar 

  78. Roth ME, Casimir AG, Carroll ME. Influence of estrogen in the acquisition of intravenously self-administered heroin in female rats. Pharmacol Biochem Behav. 2002;72(1–2):313–8.

    Article  PubMed  CAS  Google Scholar 

  79. Griffin ML et al. Alcohol use across the menstrual cycle among marihuana users. Alcohol. 1987;4(6):457–62.

    Article  PubMed  CAS  Google Scholar 

  80. Griffin ML et al. Marihuana use across the menstrual cycle. Drug Alcohol Depend. 1986;18(2):213–24.

    Article  PubMed  CAS  Google Scholar 

  81. Lex BW et al. Effects of acute marijuana smoking on pulse rate and mood states in women. Psychopharmacology (Berl). 1984;84(2):178–87.

    Article  CAS  Google Scholar 

  82. Fattore L et al. Drug- and cue-induced reinstatement of cannabinoid-seeking behaviour in male and female rats: influence of ovarian hormones. Br J Pharmacol. 2010;160(3):724–35.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  83. Winsauer PJ et al. Long-term behavioral and pharmacodynamic effects of delta-9-tetrahydrocannabinol in female rats depend on ovarian hormone status. Addict Biol. 2011;16(1):64–81.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  84. Vallee M et al. Pregnenolone can protect the brain from cannabis intoxication. Science. 2014;343(6166):94–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  85. Schneider M, Koch M. Chronic pubertal, but not adult chronic cannabinoid treatment impairs sensorimotor gating, recognition memory, and the performance in a progressive ratio task in adult rats. Neuropsychopharmacology. 2003;28(10):1760–9.

    Article  PubMed  CAS  Google Scholar 

  86. Pope Jr HG et al. Early-onset cannabis use and cognitive deficits: what is the nature of the association? Drug Alcohol Depend. 2003;69(3):303–10.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Julianne Flanagan declares that she has no conflict of interest.

Megan M. Moran-Santa Maria has received grants from NIH NIDA/ORWH (Co-I on P50 DA016511 "Sex and Gender Factors Affecting Women’s Health") and NIH/NICHD (K12 HD055885 Recipient "Impact of ovarian hormones on brain activity in cocaine-dependent women during exposure to psychosocial stress").

Kathleen Brady is the PI on NIH/NICHD (K12 HD055885) Build Interdisciplinary Research Careers in Women’s Health (BIRCWH)

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megan M. Moran-Santa Maria.

Additional information

This article is part of the Topical Collection on Women’s Mental Health

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maria, M.M.MS., Flanagan, J. & Brady, K. Ovarian Hormones and Drug Abuse. Curr Psychiatry Rep 16, 511 (2014). https://doi.org/10.1007/s11920-014-0511-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-014-0511-7

Keywords

Navigation