Skip to main content
Log in

Lentivirus-Mediated Overexpression of MicroRNA-199a Inhibits Cell Proliferation of Human Hepatocellular Carcinoma

  • Translational Biomedical Research
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

microRNA-199a (miR-199a) is a highly conserved miRNA, always deregulated in numerous human tumors. The results of microarray analysis indicated that miR-199a was frequently downregulated in hepatocellular carcinoma (HCC). The expression levels of miR-199a in 11 pairs of matched HCC neoplastic and adjacent non-neoplastic tissues, 5 HCC cell lines and liver cell line L02 were examined by quantitative real-time PCR analysis. We found miR-199a was significantly down-regulated in HCC tissues when compared with pair-matched adjacent non-tumor tissues. We also found the expression level of miR-199a was also substantially decreased in several human HCC cell lines including SMMC-7721, BEL-7402, BEL-7701, MHCC97H, and HepG2. To investigate the role of miR-199a in tumorigenesis, we developed a lentiviral vector for the expression of pre-miR-199a (Lenti-miR-199a). Lenti-miR-199a inhibited HCC cell proliferation in vitro and in vivo. Compared to parental cells or cells transfected with a control vector, the overexpression of microRNA-199a in the HCC cell lines HepG2 stably was showed to reduce cell proliferation in vitro and in vivo. Luciferase reporter assay revealed the regulation of miR-199a on 3’-UTR of HIF-1α. Further investigation confirmed that miR-199a significantly reduced the endogenous protein level of HIF-1α in hypoxia. MiR-199a inhibits cell proliferation in vitro and in vivo partly through down-regulation of HIF-1α in human HCC. Thus, these studies provide an important new insight into the pathogenesis of human HCC and it may open a new perspective for the development of effective gene therapy for human HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

miRNA:

MicroRNA

HCC:

Human hepatocellular carcinoma

HIF-1α:

Hypoxia inducible factor-1α

CCK-8:

Cell Counting Kit-8

RFP:

Red fluorescent protein

References

  1. Pang, R. W., & Poon, R. T. (2007). From molecular biology to targeted therapies for hepatocellular carcinoma: The future is now. Oncology, 72(Suppl 1), 30–44.

    Article  PubMed  CAS  Google Scholar 

  2. Pang, R. W., Joh, J. W., Johnson, P. J., Monden, M., Pawlik, T. M., & Poon, R. T. (2008). Biology of hepatocellular carcinoma. Annals of Surgical Oncology, 15(4), 962–971.

    Article  PubMed  Google Scholar 

  3. Calin, G. A., & Croce, C. M. (2006). MicroRNA signatures in human cancers. Nature Reviews Cancer, 6(11), 857–866.

    Article  PubMed  CAS  Google Scholar 

  4. Esquela-Kerscher, A., & Slack, F. J. (2006). Oncomirs: MicroRNAs with a role in cancer. Nature Reviews Cancer, 6(4), 259–269.

    Article  PubMed  CAS  Google Scholar 

  5. Ambros, V. (2001). microRNAs: Tiny regulators with great potential. Cell, 107(7), 823–826.

    Article  PubMed  CAS  Google Scholar 

  6. Cannell, I. G., Kong, Y. W., & Bushell, M. (2008). How do microRNAs regulate gene expression? Biochemical Society Transactions, 36(pt 6), 1224–1231.

    Article  PubMed  CAS  Google Scholar 

  7. Baek, D., Villen, J., Shin, C., Camargo, F. D., Gygi, S. P., & Bartel, D. P. (2008). The impact of microRNAs on protein output. Nature, 455(7209), 64–71.

    Article  PubMed  CAS  Google Scholar 

  8. Lim, L. P., Lau, N. C., Garrett-Engele, P., et al. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 433(7027), 769–773.

    Article  PubMed  CAS  Google Scholar 

  9. Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.

    Article  PubMed  CAS  Google Scholar 

  10. Saito, Y., Suzuki, H., & Hibi, T. (2009). The role of microRNAs in gastrointestinal cancers. Journal of Gastroenterology, 44(Suppl 19), 18–22.

    Article  PubMed  CAS  Google Scholar 

  11. Iorio, M. V., Visone, R., Di Leva, G., et al. (2007). MicroRNA signatures in human ovarian cancer. Cancer Research, 67(18), 8699–8707.

    Article  PubMed  CAS  Google Scholar 

  12. Jiang, J., Gusev, Y., Aderca, I., et al. (2008). Association of microRNA expression in hepatocellular carcinomas with hepatitis infection, cirrhosis, and patient survival. Clinical Cancer Research, 14(2), 419–427.

    Article  PubMed  CAS  Google Scholar 

  13. Worley, L. A., Long, M. D., Onken, M. D., & Harbour, J. W. (2008). Micro-RNAs associated with metastasis in uveal melanoma identified by multiplexed microarray profiling. Melanoma Research, 18(3), 184–190.

    Article  PubMed  CAS  Google Scholar 

  14. Chen, X. M. (2009). MicroRNA signatures in liver diseases. World Journal of Gastroenterology, 15(14), 1665–1672.

    Article  PubMed  CAS  Google Scholar 

  15. Chen, R., Alvero, A. B., Silasi, D. A., et al. (2008). Regulation of IKKbeta by miR-199a affects NF-kappaB activity in ovarian cancer cells. Oncogene, 27(34), 4712–4723.

    Article  PubMed  CAS  Google Scholar 

  16. Krek, A., Grun, D., Poy, M. N., et al. (2005). Combinatorial microRNA target predictions. Nature Genetics, 37(5), 495–500.

    Article  PubMed  CAS  Google Scholar 

  17. Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P., & Burge, C. B. (2003). Prediction of mammalian microRNA targets. Cell, 115(7), 787–798.

    Article  PubMed  CAS  Google Scholar 

  18. John, B., Enright, A. J., Aravin, A., Tuschl, T., Sander, C., & Marks, D. S. (2004). Human microRNA targets. PLoS Biol, 2(11), e363.

    Article  PubMed  Google Scholar 

  19. Ke, Q., & Costa, M. (2006). Hypoxia-inducible factor-1 (HIF-1). Molecular Pharmacology, 70(5), 1469–1480.

    Article  PubMed  CAS  Google Scholar 

  20. Van der Groep, P., Bouter, A., Menko, F. H., van der Wall, E., & Van Diest, P. J. (2008). High frequency of HIF-1alpha overexpression in BRCA1 related breast cancer. Breast Cancer Research and Treatment, 111(3), 475–480.

    Article  PubMed  CAS  Google Scholar 

  21. Swinson, D. E., & O’Byrne, K. J. (2006). Interactions between hypoxia and epidermal growth factor receptor in non-small-cell lung cancer. Clinical Lung Cancer, 7(4), 250–256.

    Article  PubMed  CAS  Google Scholar 

  22. Unruh, A., Ressel, A., Mohamed, H. G., et al. (2003). The hypoxia-inducible factor-1 alpha is a negative factor for tumor therapy. Oncogene, 22(21), 3213–3220.

    Article  PubMed  CAS  Google Scholar 

  23. Kung, A. L., Zabludoff, S. D., France, D. S., et al. (2004). Small molecule blockade of transcriptional coactivation of the hypoxia-inducible factor pathway. Cancer Cell, 6(1), 33–43.

    Article  PubMed  CAS  Google Scholar 

  24. Lee, J. W., Bae, S. H., Jeong, J. W., Kim, S. H., & Kim, K. W. (2004). Hypoxia-inducible factor (HIF-1)alpha: Its protein stability and biological functions. Experimental Molecular Medicine, 36(1), 1–12.

    Article  PubMed  Google Scholar 

  25. Maxwell, P. H. (2005). The HIF pathway in cancer. Seminars in Cell and Developmental Biology, 16(4–5), 523–530.

    PubMed  CAS  Google Scholar 

  26. Lee, Y. S., & Lee, Y. S. (2006). MicroRNAs: Small but potent oncogenes or tumor suppressors. Current Opinion in Investigational Drugs, 7(6), 560–564.

    PubMed  CAS  Google Scholar 

  27. Rossi, J. J. (2009). New hope for a microRNA therapy for liver cancer. Cell, 137(6), 990–992.

    Article  PubMed  CAS  Google Scholar 

  28. Aravalli, R. N., Steer, C. J., & Cressman, E. N. (2008). Molecular mechanisms of hepatocellular carcinoma. Hepatology, 48(6), 2047–2063.

    Article  PubMed  CAS  Google Scholar 

  29. Visone, R., & Croce, C. M. (2009). MiRNAs and cancer. American Journal of Pathology, 174(4), 1131–1138.

    Article  PubMed  CAS  Google Scholar 

  30. Wang, V., & Wu, W. (2009). MicroRNA-based therapeutics for cancer. Biodrugs, 23(1), 15–23.

    Article  PubMed  Google Scholar 

  31. Kota, J., Chivukula, R. R., O’Donnell, K. A., et al. (2009). Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell, 137(6), 1005–1017.

    Article  PubMed  CAS  Google Scholar 

  32. Castanotto, D., & Rossi, J. J. (2009). The promises and pitfalls of RNA-interference-based therapeutics. Nature, 457(7228), 426–433.

    Article  PubMed  CAS  Google Scholar 

  33. Liu, Q. S., Zhang, J., Liu, M., & Dong, W. G. (2010). Lentiviral-mediated miRNA against liver-intestine cadherin suppresses tumor growth and invasiveness of human gastric cancer. Cancer Science, 101(8), 1807–1812.

    Article  PubMed  Google Scholar 

  34. Yeo, E. J., Chun, Y. S., Cho, Y. S., et al. (2003). YC-1: A potential anticancer drug targeting hypoxia-inducible factor 1. Journal of the National Cancer Institute, 95(7), 516–525.

    Article  PubMed  CAS  Google Scholar 

  35. Brown, L. M., Cowen, R. L., Debray, C., et al. (2006). Reversing hypoxic cell chemoresistance in vitro using genetic and small molecule approaches targeting hypoxia inducible factor-1. Molecular Pharmacology, 69(2), 411–418.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from State Major Basic Research Development Program of China (973 Project No. 2010CB933902). We thank Dr. Xi Chen for his technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Qing Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, X.Q., Cheng, H.Q., Qian, X. et al. Lentivirus-Mediated Overexpression of MicroRNA-199a Inhibits Cell Proliferation of Human Hepatocellular Carcinoma. Cell Biochem Biophys 62, 237–244 (2012). https://doi.org/10.1007/s12013-011-9263-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-011-9263-8

Keywords

Navigation