Skip to main content
Log in

Parkin Disrupts the α-Synuclein/Dopamine Transporter Interaction: Consequences Toward Dopamine-induced Toxicity

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Parkinson’s disease is characterized by progressive neuronal degeneration of dopaminergic neurons in the substantia nigra. Many factors are thought to contribute to the neuronal cell death that occurs in Parkinson’s disease, including α-synuclein-mediated toxicity. Previously, we have reported that α-synuclein directly couples to the carboxyl tail of the dopamine transporter (DAT) and that the α-synuclein/DAT protein complex formation accelerates DAT-mediated cellular dopamine (DA) uptake and DA-induced cellular apoptosis. In the present study, we report that parkin, an E2-dependent E3 protein ubiquitin ligase associated with recessive early onset Parkinson’s disease, exerts a protective effect against DA-induced α-synuclein-dependent cell toxicity. Parkin impairs the α-synuclein/DAT coupling by interacting with the carboxyl-terminus of the DAT and blocks the α-synuclein-induced enhancement in both DAT cell surface expression and DAT-mediated DA uptake. Moreover, we have found that parkin protects against DA-induced cell toxicity in dopaminergic SK-N-SH cells. These findings will help identify the role of these proteins in the etiology and/or maintenance of Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

DA:

dopamine

DAT:

dopamine transporter

GST:

glutathione S-transferase

HEK:

human embryonic kidney

PBS:

phosphate-buffered saline

PD:

Parkinson’s disease

PI:

propidium iodide

ROS:

reactive oxygen species

References

  • Abeliovich, A., Schmitz, Y., Farinas, I., Choi-Lundberg, D., Ho, W. H., Castillo, P. E., et al. (2000). Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron, 25, 239–252.

    Article  PubMed  CAS  Google Scholar 

  • Aguilar, R. C., & Wendland, B. (2003). Ubiquitin: Not just for proteasomes anymore. Current Opinion in Cell Biology, 15, 184–190.

    Article  PubMed  CAS  Google Scholar 

  • Asanuma, M., Miyazaki, I., & Ogawa, N. (2003). Dopamine- or L-DOPA-induced neurotoxicity: The role of dopamine quinone formation and tyrosinase in a model of Parkinson’s disease. Neurotoxicity Research, 5, 165–176.

    Article  PubMed  Google Scholar 

  • Bianchi, P., Seguelas, M. H., Parini, A., & Cambon, C. (2003). Activation of pro-apoptotic cascade by dopamine in renal epithelial cells is fully dependent on hydrogen peroxide generation by monoamine oxidases. Journal of the American Society of Nephrology, 14, 855–862.

    Article  PubMed  CAS  Google Scholar 

  • Chen, N., & Reith, M. E. (2000). Structure and function of the dopamine transporter. European Journal of Pharmacology, 405, 329–339.

    Article  PubMed  CAS  Google Scholar 

  • Choi, P., Golts, N., Snyder, H., Chong, M., Petrucelli, L., Hardy, J., et al. (2001). Co-association of parkin and alpha-synuclein. Neuroreport, 12, 2839–2843.

    Article  PubMed  CAS  Google Scholar 

  • Chung, K. K., Dawson, V. L., & Dawson, T. M. (2003). New insights into Parkinson’s disease. Journal of Neurology, 250(Suppl 3), III15–24.

    PubMed  Google Scholar 

  • Chung, K. K., Zhang, Y., Lim, K. L., Tanaka, Y., Huang, H., Gao, J., et al. (2001). Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: Implications for Lewy-body formation in Parkinson disease. Natural Medicines, 7, 1144–1150.

    Article  CAS  Google Scholar 

  • Clark, I. E., Dodson, M. W., Jiang, C., Cao, J. H., Huh, J. R., Seol, J. H., et al. (2006). Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature, 441, 1162–1166.

    Article  PubMed  CAS  Google Scholar 

  • Daniels, G. M., & Amara, S. G. (1999). Regulated trafficking of the human dopamine transporter. Clathrin-mediated internalization and lysosomal degradation in response to phorbol esters. Journal of Biological Chemistry, 274, 35794–35801.

    Article  PubMed  CAS  Google Scholar 

  • Forno, L. S. (1996). Neuropathology of Parkinson’s disease. Journal of Neuropathology and Experimental Neurology, 55, 259–272.

    PubMed  CAS  Google Scholar 

  • Gerlach, M., Riederer, P., & Youdim, M. B. (1996). Molecular mechanisms for neurodegeneration. Synergism between reactive oxygen species, calcium, and excitotoxic amino acids. Advances in Neurology, 69, 177–194.

    PubMed  CAS  Google Scholar 

  • Giasson, B. I., & Lee, V. M. (2001). Parkin and the molecular pathways of Parkinson’s disease. Neuron, 31, 885–888.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, M. S., Fleming, S. M., Palacino, J. J., Cepeda, C., Lam, H. A., Bhatnagar, A., et al. (2003). Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. Journal of Biological Chemistry, 278, 43628–43635.

    Article  PubMed  CAS  Google Scholar 

  • Graham, D. G. (1978). Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Molecular Pharmacology, 14, 633–643.

    PubMed  CAS  Google Scholar 

  • Hershko, A., & Ciechanover, A. (1998). The ubiquitin system. Annual Reviews of Biochemical, 67, 425–479.

    Article  CAS  Google Scholar 

  • Hicke, L. (2001). Protein regulation by monoubiquitin. Nature Reviews. Molecular Cell Biology, 2, 195–201.

    Article  PubMed  CAS  Google Scholar 

  • Hicke, L., & Dunn, R. (2003). Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annual Review of Cell and Developmental Biology, 19, 141–172.

    Article  PubMed  CAS  Google Scholar 

  • Horn, A. S. (1990). Dopamine uptake: A review of progress in the last decade. Progress in Neurobiology, 34, 387–400.

    Article  PubMed  CAS  Google Scholar 

  • Hsu, L. J., Sagara, Y., Arroyo, A., Rockenstein, E., Sisk, A., Mallory, M., et al. (2000). Alpha-synuclein promotes mitochondrial deficit and oxidative stress. American Journal of Pathology, 157, 401–410.

    PubMed  CAS  Google Scholar 

  • Javitch, J. A., D’Amato, R. J., Strittmatter, S. M., & Snyder, S. H. (1985). Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: Uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proceedings of the National Academy of Sciences of the United States of America, 82, 2173–2177.

    Google Scholar 

  • Jenner, P., & Olanow, C. W. (1996). Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology, 47, S161–S170.

    PubMed  CAS  Google Scholar 

  • Jiang, H., Jiang, Q., & Feng, J. (2004a). Parkin increases dopamine uptake by enhancing the cell surface expression of dopamine transporter. Journal of Biological Chemistry, 279, 54380–54386.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, H., Ren, Y., Zhao, J., & Feng, J. (2004b). Parkin protects human dopaminergic neuroblastoma cells against dopamine-induced apoptosis. Human Molecular Genetics, 13, 1745–1754.

    Article  PubMed  CAS  Google Scholar 

  • Junn, E., & Mouradian, M. M. (2002). Human alpha-synuclein over-expression increases intracellular reactive oxygen species levels and susceptibility to dopamine. Neuroscience Letters, 320, 146–150.

    Article  PubMed  CAS  Google Scholar 

  • Katzmann, D. J., Odorizzi, G., & Emr, S. D. (2002). Receptor downregulation and multivesicular-body sorting. Nature Reviews. Molecular Cell Biology, 3, 893–905.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S. J., Sung, J. Y., Um, J. W., Hattori, N., Mizuno, Y., Tanaka, K., et al. (2003). Parkin cleaves intracellular alpha-synuclein inclusions via the activation of calpain. Journal of Biological Chemistry, 278, 41890–41899.

    Article  PubMed  CAS  Google Scholar 

  • Kitayama, S., Shimada, S., & Uhl, G. R. (1992). Parkinsonism-inducing neurotoxin MPP+: Uptake and toxicity in nonneuronal COS cells expressing dopamine transporter cDNA. Annals of Neurology, 32, 109–111.

    Article  PubMed  CAS  Google Scholar 

  • Kruger, R., Kuhn, W., Muller, T., Woitalla, D., Graeber, M., Kösel, S., et al. (1998). Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nature Genetics, 18, 106–108.

    Article  PubMed  CAS  Google Scholar 

  • LaVoie, M. J., Ostaszewski, B. L., Weihofen, A., Schlossmacher, M. G., & Selkoe, D. J. (2005). Dopamine covalently modifies and functionally inactivates parkin. Natural Medicines, 11, 1214–1221.

    Article  CAS  Google Scholar 

  • Lee, F. J., Liu, F., Pristupa, Z. B., & Niznik, H. B. (2001). Direct binding and functional coupling of alpha-synuclein to the dopamine transporters accelerate dopamine-induced apoptosis. FASEB Journal, 15, 916–926.

    Article  PubMed  CAS  Google Scholar 

  • Lee, F. J., Pristupa, Z. B., Ciliax, B. J., Levey, A. I., & Niznik, H. B. (1996). The dopamine transporter carboxyl-terminal tail. Truncation/substitution mutants selectively confer high affinity dopamine uptake while attenuating recognition of the ligand binding domain. Journal of Biological Chemistry, 271, 20885–20894.

    Article  PubMed  CAS  Google Scholar 

  • Lehmensiek, V., Tan, E. M., Schwarz, J., & Storch, A. (2002). Expression of mutant alpha-synucleins enhances dopamine transporter-mediated MPP+ toxicity in vitro. Neuroreport, 13, 1279–1283.

    Article  PubMed  CAS  Google Scholar 

  • Lehmensiek, V., Tan, E. M., Liebau, S., Lenk, T., Zettlmeisl, H., Schwarz, J., et al. (2006). Dopamine transporter-mediated cytotoxicity of 6-hydroxydopamine in vitro depends on expression of mutant alpha-synucleins related to Parkinson’s disease. Neurochemistry International, 48, 329–340.

    Article  PubMed  CAS  Google Scholar 

  • Lim, K. L., Chew, K. C., Tan, J. M., Wang, C., Chung, K. K., Zhang, Y., et al. (2005). Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: Implications for Lewy body formation. Journal of Neuroscience, 25, 2002–2009.

    Article  PubMed  CAS  Google Scholar 

  • Liu, F., Wan, Q., Pristupa, Z. B., Yu, X. M., Wang, Y. T., & Niznik, H. B. (2000). Direct protein–protein coupling enables cross-talk between dopamine D5 and gamma-aminobutyric acid A receptors. Nature, 403, 274–280.

    Article  PubMed  CAS  Google Scholar 

  • Lo Bianco, C., Ridet, J. L., Schneider, B. L., Deglon, N., & Aebischer, P. (2002). Alpha-Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 99, 10813–10818.

  • Lo Bianco, C., Schneider, B. L., Bauer, M., Sajadi, A., Brice, A., Iwatsubo, T., et al. (2004). Lentiviral vector delivery of parkin prevents dopaminergic degeneration in an alpha-synuclein rat model of Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 101, 17510–17515.

    Google Scholar 

  • Magasanik, B., & Kaiser, C. A. (2002). Nitrogen regulation in Saccharomyces cerevisiae. Gene, 290, 1–18.

    Article  PubMed  CAS  Google Scholar 

  • Melikian, H. E., & Buckley, K. M. (1999). Membrane trafficking regulates the activity of the human dopamine transporter. Journal of Neuroscience, 19, 7699–7710.

    PubMed  CAS  Google Scholar 

  • Mortensen, O. V., & Amara, S. G. (2003). Dynamic regulation of the dopamine transporter. European Journal of Pharmacology, 479, 159–170.

    Article  PubMed  CAS  Google Scholar 

  • Moussa, C. E., Wersinger, C., Tomita, Y., & Sidhu, A. (2004). Differential cytotoxicity of human wild type and mutant alpha-synuclein in human neuroblastoma SH-SY5Y cells in the presence of dopamine. Biochemistry, 43, 5539–5550.

    Article  PubMed  CAS  Google Scholar 

  • Napolitano, A., Cesura, A. M., & Da Prada, M. (1995). The role of monoamine oxidase and catechol O-methyltransferase in dopaminergic neurotransmission. Journal of Neural Transmission. Supplementum, 45, 35–45.

    PubMed  CAS  Google Scholar 

  • Olanow, C. W., & Arendash, G. W. (1994). Metals and free radicals in neurodegeneration. Current Opinion in Neurology, 7, 548–558.

    Article  PubMed  CAS  Google Scholar 

  • Oluwatosin-Chigbu, Y., Robbins, A., Scott, C. W., Arriza, J. L., Reid, J. D., & Zysk, J. R. (2003). Parkin suppresses wild-type alpha-synuclein-induced toxicity in SHSY-5Y cells. Biochemical and Biophysical Research Communications, 309, 679–684.

    Article  PubMed  CAS  Google Scholar 

  • Palacino, J. J., Sagi, D., Goldberg, M. S., Krauss, S., Motz, C., Wacker, M., et al. (2004). Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. Journal of Biological Chemistry, 279, 18614–18622.

    Article  PubMed  CAS  Google Scholar 

  • Park, J., Lee, S. B., Lee, S., Kim, Y., Song, S., Kim, S., et al. (2006). Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature, 441, 1157–1161.

    Article  PubMed  CAS  Google Scholar 

  • Pei, L., Lee, F. J., Moszczynska, A., Vukusic, B., & Liu, F. (2004). Regulation of dopamine D1 receptor function by physical interaction with the NMDA receptors. Journal of Neuroscience, 24, 1149–1158.

    Article  PubMed  CAS  Google Scholar 

  • Perez, R. G., & Hastings, T. G. (2004). Could a loss of alpha-synuclein function put dopaminergic neurons at risk? Journal of Neurochemistry, 89, 1318–1324.

    Article  PubMed  CAS  Google Scholar 

  • Perez, R. G., Waymire, J. C., Lin, E., Liu, J. J., Guo, F., & Zigmond, M. J. (2002). A role for alpha-synuclein in the regulation of dopamine biosynthesis. Journal of Neuroscience, 22, 3090–3099.

    PubMed  CAS  Google Scholar 

  • Petrucelli, L., O’Farrell, C., Lockhart, P. J., Baptista, M., Kehoe, K., Vink, L., et al. (2002). Parkin protects against the toxicity associated with mutant alpha-synuclein: Proteasome dysfunction selectively affects catecholaminergic neurons. Neuron, 36, 1007–1019.

    Article  PubMed  CAS  Google Scholar 

  • Pickart, C. M. (2000). Ubiquitin in chains. Trends in Biochemical Sciences, 25, 544–548.

    Article  PubMed  CAS  Google Scholar 

  • Pifl, C., Giros, B., & Caron, M. G. (1993). Dopamine transporter expression confers cytotoxicity to low doses of the parkinsonism-inducing neurotoxin 1-methyl-4-phenylpyridinium. Journal of Neuroscience, 13, 4246–4253.

    PubMed  CAS  Google Scholar 

  • Polymeropoulos, M. H., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., Dutra, A., et al. (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science, 276, 2045–2047.

    Article  PubMed  CAS  Google Scholar 

  • Pristupa, Z. B., McConkey, F., Liu, F., Man, H. Y., Lee, F. J., Wang, Y. T., et al. (1998). Protein kinase-mediated bidirectional trafficking and functional regulation of the human dopamine transporter. Synapse, 30, 79–87.

    Article  PubMed  CAS  Google Scholar 

  • Rawal, N., Periquet, M., Lohmann, E., Lücking, C. B., Teive, H. A., Ambrosio, G., et al. (2003). New parkin mutations and atypical phenotypes in families with autosomal recessive parkinsonism. Neurology, 60, 1378–1381.

    PubMed  CAS  Google Scholar 

  • Shimura, H., Schlossmacher, M. G., Hattori, N., Frosch, M. P., Trockenbacher, A., Schneider, R., et al. (2001). Ubiquitination of a new form of alpha-synuclein by parkin from human brain: Implications for Parkinson’s disease. Science, 293, 263–269.

    Article  PubMed  CAS  Google Scholar 

  • Shyu, W. C., Lin, S. Z., Chiang, M. F., Pang, C. Y., Chen, S. Y., Hsin, Y. L., et al. (2005). Early-onset Parkinson’s disease in a Chinese population: 99mTc-TRODAT-1 SPECT, Parkin gene analysis and clinical study. Parkinsonism & Related Disorders, 11, 173–180.

    Article  Google Scholar 

  • Singleton, A. B., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., et al. (2003). alpha-Synuclein locus triplication causes Parkinson’s disease. Science, 302, 841.

    Article  PubMed  CAS  Google Scholar 

  • Torres, G. E. (2006). The dopamine transporter proteome. Journal of Neurochemistry, 97(Suppl 1), 3–10.

    Article  PubMed  CAS  Google Scholar 

  • Torres, G. E., Yao, W. D., Mohn, A. R., Quan, H., Kim, K. M., Levey, A. I., et al. (2001). Functional interaction between monoamine plasma membrane transporters and the synaptic PDZ domain-containing protein PICK1. Neuron, 30, 121–134.

    Article  PubMed  CAS  Google Scholar 

  • Unger, E. L., Eve, D. J., Perez, X. A., Reichenbach, D. K., Xu, Y., Lee, M. K., et al. (2006). Locomotor hyperactivity and alterations in dopamine neurotransmission are associated with overexpression of A53T mutant human alpha-synuclein in mice. Neurobiology of Disease, 21, 431–443.

    Article  PubMed  CAS  Google Scholar 

  • Wersinger, C., Prou, D., Vernier, P., & Sidhu, A. (2003). Modulation of dopamine transporter function by alpha-synuclein is altered by impairment of cell adhesion and by induction of oxidative stress. FASEB Journal, 17, 2151–2153.

    PubMed  CAS  Google Scholar 

  • Xu, J., Kao, S. Y., Lee, F. J., Song, W., Jin, L. W., & Yankner, B. A. (2002). Dopamine-dependent neurotoxicity of alpha-synuclein: A mechanism for selective neurodegeneration in Parkinson disease. Natural Medicines, 8, 600–606.

    Article  CAS  Google Scholar 

  • Yamada, M., Mizuno, Y., & Mochizuki, H. (2005). Parkin gene therapy for alpha-synucleinopathy: A rat model of Parkinson’s disease. Human Gene Therapy, 16, 262–270.

    Article  PubMed  CAS  Google Scholar 

  • Zarranz, J. J., Alegre, J., Gomez-Esteban, J. C., Lezcano, E., Ros, R., Ampuero, I., et al. (2004). The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Annals of Neurology, 55, 164–173.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Gao, J., Chung, K. K., Huang, H., Dawson, V. L., & Dawson, T. M. (2000). Parkin functions as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proceedings of the National Academy of Sciences of the United States of America, 97, 13354–13359.

    Google Scholar 

Download references

Acknowledgements

We thank S. W. Zou for technical assistance. A. M. is a recipient of Parkinson Society Canada fellowship. F. J. S. L. is a recipient of a Parkinson Society Canada fellowship and NARSAD Young Investigator award. F. L. is a recipient of McDonald Scholarship of the Heart and Stroke Foundation of Canada. The work is supported by the Canadian Institutes of Health Research (F. L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moszczynska, A., Saleh, J., Zhang, H. et al. Parkin Disrupts the α-Synuclein/Dopamine Transporter Interaction: Consequences Toward Dopamine-induced Toxicity. J Mol Neurosci 32, 217–227 (2007). https://doi.org/10.1007/s12031-007-0037-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-007-0037-0

Keywords

Navigation