Skip to main content

Advertisement

Log in

Inclusion Body Myositis: A View from the Caenorhabditis elegans Muscle

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Inclusion body myositis (IBM) is the most common myopathy in people over 50 years of age. It involves an inflammatory process that, paradoxically, does not respond to anti-inflammatory drugs. A key feature of IBM is the presence of amyloid-β-peptide aggregates called amyloid deposits, which are also characteristic of Alzheimer’s disease. The use of animals that mimic at least some characteristics of a disease has become very important in the quest to elucidate the molecular mechanisms underlying this and other pathogeneses. Although there are some transgenic mouse strains that recreate some aspects of IBM, in this review, we hypothesize that the great degree of similarity between nematode and human genes known to be involved in IBM as well as the considerable conservation of biological mechanisms across species is an important feature that must be taken into consideration when deciding on the use of this nematode as a model. Straightforward laboratory techniques (culture, transformation, gene knockdown, genetic screenings, etc.) as well as anatomical, physiological, and behavioral characteristics add to the value of this model. In the present work, we review evidence that supports the use of Caenorhabditis elegans as a biological model for IBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Selkoe DJ (2007) Developing preventive therapies for chronic diseases: lessons learned from Alzheimer’s disease. Nutr Rev 65:S239–S243

    Google Scholar 

  2. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766

    Google Scholar 

  3. Engel WK, Askanas V (2006) Inclusion-body myositis: clinical, diagnostic, and pathologic aspects. Neurology 66:S20–S29

    Google Scholar 

  4. Askanas V, Engel WK (2007) Inclusion-body myositis, a multifactorial muscle disease associated with aging: current concepts of pathogenesis. Curr Opin Rheumatol 19:550–559

    Google Scholar 

  5. Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8:101–112

    Google Scholar 

  6. Brenner S (2003) Nature’s gift to science (Nobel lecture). Chembiochem 4:683–687

    Google Scholar 

  7. Culetto E, Sattelle DB (2000) A role for Caenorhabditis elegans in understanding the function and interactions of human disease genes. Hum Mol Genet 9:869–877

    Google Scholar 

  8. Riddle DL, Blumenthal T, Meyer BJ, Priess JR (1997) C. elegans II. In: Riddle DL, Blumenthal T, Meyer BJ, Priess JR (eds) Cold Spring Harbor monograph series. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  9. Hope IA (1999) C. elegans: a practical approach. In: Hope IA (ed) The practical approach series. Oxford University Press, Oxford, pp 69–95

    Google Scholar 

  10. Crawford D, Libina N, Kenyon C (2007) Caenorhabditis elegans integrates food and reproductive signals in lifespan determination. Aging Cell 6:715–721

    Google Scholar 

  11. Ghazi A, Henis-Korenblit S, Kenyon C (2007) Regulation of Caenorhabditis elegans lifespan by a proteasomal E3 ligase complex. Proc Natl Acad Sci U S A 104:5947–5952

    Google Scholar 

  12. Hansen M, Chandra A, Mitic LL, Onken B, Driscoll M, Kenyon C (2008) A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 4:e24

    Google Scholar 

  13. Broue F, Liere P, Kenyon C, Baulieu EE (2007) A steroid hormone that extends the lifespan of Caenorhabditis elegans. Aging Cell 6:87–94

    Google Scholar 

  14. Hansen M, Hsu AL, Dillin A, Kenyon C (2005) New genes tied to endocrine, metabolic, and dietary regulation of lifespan from a Caenorhabditis elegans genomic RNAi screen. PLoS Genet 1:119–128

    Google Scholar 

  15. Sulston JE, Horvitz HR (1977) Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 56:110–156

    Google Scholar 

  16. Horvitz HR (2003) Worms, life, and death (Nobel lecture). Chembiochem 4:697–711

    Google Scholar 

  17. Metzstein MM, Stanfield GM, Horvitz HR (1998) Genetics of programmed cell death in C. elegans: past, present and future. Trends Genet 14:410–416

    Google Scholar 

  18. Sulston JE (2003) Caenorhabditis elegans: the cell lineage and beyond (Nobel lecture). Chembiochem 4:688–696

    Google Scholar 

  19. Badrising UA, Maat-Schieman ML, van Houwelingen JC et al (2005) Inclusion body myositis. Clinical features and clinical course of the disease in 64 patients. J Neurol 252:1448–1454

    Google Scholar 

  20. Adams RD, Kakulas BA, Samaha FA (1965) A myopathy with cellular inclusions. Trans Am Neurol Assoc 90:213–216

    Google Scholar 

  21. Lotz BP, Engel AG, Nishino H, Stevens JC, Litchy WJ (1989) Inclusion body myositis. Observations in 40 patients. Brain 112(Pt 3):727–747

    Google Scholar 

  22. Figarella-Branger D, Civatte M, Bartoli C, Pellissier JF (2003) Cytokines, chemokines, and cell adhesion molecules in inflammatory myopathies. Muscle Nerve 28:659–682

    Google Scholar 

  23. Neville HE, Baumbach LL, Ringel SP, Russo LS Jr., Sujansky E, Garcia CA (1992) Familial inclusion body myositis: evidence for autosomal dominant inheritance. Neurology 42:897–902

    Google Scholar 

  24. McFerrin J, Engel WK, Askanas V (1998) Impaired innervation of cultured human muscle overexpressing betaAPP experimentally and genetically: relevance to inclusion-body myopathies. Neuroreport 9:3201–3205

    Google Scholar 

  25. Askanas V, Alvarez RB, Engel WK (1993) Beta-amyloid precursor epitopes in muscle fibers of inclusion body myositis. Ann Neurol 34:551–560

    Google Scholar 

  26. Askanas V, Engel WK (1993) New advances in inclusion-body myositis. Curr Opin Rheumatol 5:732–741

    Google Scholar 

  27. Needham M, Mastaglia FL, Garlepp MJ (2007) Genetics of inclusion-body myositis. Muscle Nerve 35:549–561

    Google Scholar 

  28. Koffman BM, Sivakumar K, Simonis T, Stroncek D, Dalakas MC (1998) HLA allele distribution distinguishes sporadic inclusion body myositis from hereditary inclusion body myopathies. J Neuroimmunol 84:139–142

    Google Scholar 

  29. Ranque-Francois B, Maisonobe T, Dion E et al (2005) Familial inflammatory inclusion body myositis. Ann Rheum Dis 64:634–637

    Google Scholar 

  30. Hubbers CU, Clemen CS, Kesper K et al (2007) Pathological consequences of VCP mutations on human striated muscle. Brain 130:381–393

    Google Scholar 

  31. Lindberg C, Trysberg E, Tarkowski A, Oldfors A (2003) Anti-T-lymphocyte globulin treatment in inclusion body myositis: a randomized pilot study. Neurology 61:260–262

    Google Scholar 

  32. Schmidt J, Rakocevic G, Raju R, Dalakas MC (2004) Upregulated inducible co-stimulator (ICOS) and ICOS-ligand in inclusion body myositis muscle: significance for CD8+ T cell cytotoxicity. Brain 127:1182–1190

    Google Scholar 

  33. Amemiya K, Granger RP, Dalakas MC (2000) Clonal restriction of T-cell receptor expression by infiltrating lymphocytes in inclusion body myositis persists over time. Studies in repeated muscle biopsies. Brain 123(Pt 10):2030–2039

    Google Scholar 

  34. Raju R, Vasconcelos O, Granger R, Dalakas MC (2003) Expression of IFN-gamma-inducible chemokines in inclusion body myositis. J Neuroimmunol 141:125–131

    Google Scholar 

  35. Dalakas MC (2004) Intravenous immunoglobulin in autoimmune neuromuscular diseases. JAMA 291:2367–2375

    Google Scholar 

  36. Askanas V, Engel WK, Bilak M, Alvarez RB, Selkoe DJ (1994) Twisted tubulofilaments of inclusion body myositis muscle resemble paired helical filaments of Alzheimer brain and contain hyperphosphorylated tau. Am J Pathol 144:177–187

    Google Scholar 

  37. Askanas V, Engel WK (2001) Inclusion-body myositis: newest concepts of pathogenesis and relation to aging and Alzheimer disease. J Neuropathol Exp Neurol 60:1–14

    Google Scholar 

  38. Askanas V, Engel WK (2002) Newest pathogenetic considerations in inclusion-body myositis: possible role of amyloid-beta, cholesterol, relation to aging and to Alzheimer’s disease. Curr Rheumatol Rep 4:427–433

    Google Scholar 

  39. Broccolini A, Engel WK, Alvarez RB, Askanas V (2000) Paired helical filaments of inclusion-body myositis muscle contain RNA and survival motor neuron protein. Am J Pathol 156:1151–1155

    Google Scholar 

  40. Wilczynski GM, Engel WK, Askanas V (2000) Association of active extracellular signal-regulated protein kinase with paired helical filaments of inclusion-body myositis muscle suggests its role in inclusion-body myositis tau phosphorylation. Am J Pathol 156:1835–1840

    Google Scholar 

  41. Kumamoto T, Ueyama H, Tsumura H, Toyoshima I, Tsuda T (2004) Expression of lysosome-related proteins and genes in the skeletal muscles of inclusion body myositis. Acta Neuropathol 107:59–65

    Google Scholar 

  42. Fukuchi K, Pham D, Hart M, Li L, Lindsey JR (1998) Amyloid-beta deposition in skeletal muscle of transgenic mice: possible model of inclusion body myopathy. Am J Pathol 153:1687–1693

    Google Scholar 

  43. Morgan C, Colombres M, Nunez MT, Inestrosa NC (2004) Structure and function of amyloid in Alzheimer’s disease. Prog Neurobiol 74:323–349

    Google Scholar 

  44. Soto C, Branes MC, Alvarez J, Inestrosa NC (1994) Structural determinants of the Alzheimer’s amyloid beta-peptide. J Neurochem 63:1191–1198

    Google Scholar 

  45. Askanas V, Engel WK, Alvarez RB (1993) Enhanced detection of Congo-Red-positive amyloid deposits in muscle fibers of inclusion body myositis and brain of Alzheimer’s disease using fluorescence technique. Neurology 43:1265–1267

    Google Scholar 

  46. Dalakas MC, Koffman B, Fujii M, Spector S, Sivakumar K, Cupler E (2001) A controlled study of intravenous immunoglobulin combined with prednisone in the treatment of IBM. Neurology 56:323–327

    Google Scholar 

  47. Barohn RJ, Herbelin L, Kissel JT et al (2006) Pilot trial of etanercept in the treatment of inclusion-body myositis. Neurology 66:S123–S124

    Google Scholar 

  48. Wolfe MS (2008) Gamma-secretase: structure, function, and modulation for Alzheimer’s disease. Curr Top Med Chem 8:2–8

    Google Scholar 

  49. Zhang YW, Xu H (2007) Molecular and cellular mechanisms for Alzheimer’s disease: understanding APP metabolism. Curr Mol Med 7:687–696

    Google Scholar 

  50. Jin LW, Hearn MG, Ogburn CE et al (1998) Transgenic mice over-expressing the C-99 fragment of betaPP with an alpha-secretase site mutation develop a myopathy similar to human inclusion body myositis. Am J Pathol 153:1679–1686

    Google Scholar 

  51. Tateyama M, Takeda A, Onodera Y et al (2003) Oxidative stress and predominant Abeta42(43) deposition in myopathies with rimmed vacuoles. Acta Neuropathol 105:581–585

    Google Scholar 

  52. Lunemann JD, Schmidt J, Schmid D et al (2007) Beta-amyloid is a substrate of autophagy in sporadic inclusion body myositis. Ann Neurol 61:476–483

    Google Scholar 

  53. Iqbal K, Alonso Adel C, Chen S et al (2005) Tau pathology in Alzheimer disease and other tauopathies. Biochim Biophys Acta 1739:198–210

    Google Scholar 

  54. Mirabella M, Alvarez RB, Bilak M, Engel WK, Askanas V (1996) Difference in expression of phosphorylated tau epitopes between sporadic inclusion-body myositis and hereditary inclusion-body myopathies. J Neuropathol Exp Neurol 55:774–786

    Google Scholar 

  55. Pei JJ, Braak H, An WL et al (2002) Up-regulation of mitogen-activated protein kinases ERK1/2 and MEK1/2 is associated with the progression of neurofibrillary degeneration in Alzheimer’s disease. Brain Res Mol Brain Res 109:45–55

    Google Scholar 

  56. Gross SD, Anderson RA (1998) Casein kinase I: spatial organization and positioning of a multifunctional protein kinase family. Cell Signal 10:699–711

    Google Scholar 

  57. Flotow H, Graves PR, Wang AQ, Fiol CJ, Roeske RW, Roach PJ (1990) Phosphate groups as substrate determinants for casein kinase I action. J Biol Chem 265:14264–14269

    Google Scholar 

  58. Risnik VV, Adam G, Gusev NB, Friedrich P (1988) Casein kinases I and II bound to pig brain microtubules. Cell Mol Neurobiol 8:315–324

    Google Scholar 

  59. Li G, Yin H, Kuret J (2004) Casein kinase 1 delta phosphorylates tau and disrupts its binding to microtubules. J Biol Chem 279:15938–15945

    Google Scholar 

  60. Ghoshal N, Smiley JF, DeMaggio AJ et al (1999) A new molecular link between the fibrillar and granulovacuolar lesions of Alzheimer’s disease. Am J Pathol 155:1163–1172

    Google Scholar 

  61. Kannanayakal TJ, Tao H, Vandre DD, Kuret J (2006) Casein kinase-1 isoforms differentially associate with neurofibrillary and granulovacuolar degeneration lesions. Acta Neuropathol 111:413–421

    Google Scholar 

  62. Price MA (2006) CKI, there’s more than one: casein kinase I family members in Wnt and Hedgehog signaling. Genes Dev 20:399–410

    Google Scholar 

  63. Caricasole A, Copani A, Caraci F et al (2004) Induction of Dickkopf-1, a negative modulator of the Wnt pathway, is associated with neuronal degeneration in Alzheimer’s brain. J Neurosci 24:6021–6027

    Google Scholar 

  64. Inestrosa N, De Ferrari GV, Garrido JL et al (2002) Wnt signaling involvement in beta-amyloid-dependent neurodegeneration. Neurochem Int 41:341–344

    Google Scholar 

  65. De Ferrari GV, Inestrosa NC (2000) Wnt signaling function in Alzheimer’s disease. Brain Res Brain Res Rev 33:1–12

    Google Scholar 

  66. Kannanayakal TJ, Mendell JR, Kuret J (2008) Casein kinase 1 alpha associates with the tau-bearing lesions of inclusion body myositis. Neurosci Lett 431:141–145

    Google Scholar 

  67. Wolfe MS (2008) Gamma-secretase inhibition and modulation for Alzheimer’s disease. Curr Alzheimer Res 5:158–164

    Google Scholar 

  68. Evin G, Sernee MF, Masters CL (2006) Inhibition of gamma-secretase as a therapeutic intervention for Alzheimer’s disease: prospects, limitations and strategies. CNS Drugs 20:351–372

    Google Scholar 

  69. Askanas V, Engel WK, Yang CC, Alvarez RB, Lee VM, Wisniewski T (1998) Light and electron microscopic immunolocalization of presenilin 1 in abnormal muscle fibers of patients with sporadic inclusion-body myositis and autosomal-recessive inclusion-body myopathy. Am J Pathol 152:889–895

    Google Scholar 

  70. Vassar R (2004) BACE1: the beta-secretase enzyme in Alzheimer’s disease. J Mol Neurosci 23:105–114

    Google Scholar 

  71. Cole SL, Vassar R (2007) The Alzheimer’s disease beta-secretase enzyme, BACE1. Mol Neurodegener 2:22

    Google Scholar 

  72. Vattemi G, Engel WK, McFerrin J, Buxbaum JD, Pastorino L, Askanas V (2001) Presence of BACE1 and BACE2 in muscle fibres of patients with sporadic inclusion-body myositis. Lancet 358:1962–1964

    Google Scholar 

  73. Vattemi G, Engel WK, McFerrin J, Pastorino L, Buxbaum JD, Askanas V (2003) BACE1 and BACE2 in pathologic and normal human muscle. Exp Neurol 179:150–158

    Google Scholar 

  74. He W, Lu Y, Qahwash I, Hu XY, Chang A, Yan R (2004) Reticulon family members modulate BACE1 activity and amyloid-beta peptide generation. Nat Med 10:959–965

    Google Scholar 

  75. Wojcik S, Engel WK, Yan R, McFerrin J, Askanas V (2007) NOGO is increased and binds to BACE1 in sporadic inclusion-body myositis and in A beta PP-overexpressing cultured human muscle fibers. Acta Neuropathol 114:517–526

    Google Scholar 

  76. Carson KA, Geula C, Mesulam MM (1991) Electron microscopic localization of cholinesterase activity in Alzheimer brain tissue. Brain Res 540:204–208

    Google Scholar 

  77. Geula C, Greenberg BD, Mesulam MM (1994) Cholinesterase activity in the plaques, tangles and angiopathy of Alzheimer’s disease does not emanate from amyloid. Brain Res 644:327–330

    Google Scholar 

  78. Inestrosa NC, Alarcon R (1998) Molecular interactions of acetylcholinesterase with senile plaques. J Physiol Paris 92:341–344

    Google Scholar 

  79. Alvarez A, Alarcon R, Opazo C et al (1998) Stable complexes involving acetylcholinesterase and amyloid-beta peptide change the biochemical properties of the enzyme and increase the neurotoxicity of Alzheimer’s fibrils. J Neurosci 18:3213–3223

    Google Scholar 

  80. Inestrosa NC, Alvarez A, Calderon F (1996) Acetylcholinesterase is a senile plaque component that promotes assembly of amyloid beta-peptide into Alzheimer’s filaments. Mol Psychiatry 1:359–361

    Google Scholar 

  81. Inestrosa NC, Alvarez A, Perez CA et al (1996) Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer’s fibrils: possible role of the peripheral site of the enzyme. Neuron 16:881–891

    Google Scholar 

  82. Alvarez A, Bronfman F, Perez CA, Vicente M, Garrido J, Inestrosa NC (1995) Acetylcholinesterase, a senile plaque component, affects the fibrillogenesis of amyloid-beta-peptides. Neurosci Lett 201:49–52

    Google Scholar 

  83. Alvarez A, Opazo C, Alarcon R, Garrido J, Inestrosa NC (1997) Acetylcholinesterase promotes the aggregation of amyloid-beta-peptide fragments by forming a complex with the growing fibrils. J Mol Biol 272:348–361

    Google Scholar 

  84. De Ferrari GV, Canales MA, Shin I, Weiner LM, Silman I, Inestrosa NC (2001) A structural motif of acetylcholinesterase that promotes amyloid beta-peptide fibril formation. Biochemistry 40:10447–10457

    Google Scholar 

  85. Reyes AE, Chacon MA, Dinamarca MC, Cerpa W, Morgan C, Inestrosa NC (2004) Acetylcholinesterase–Abeta complexes are more toxic than Abeta fibrils in rat hippocampus: effect on rat beta-amyloid aggregation, laminin expression, reactive astrocytosis, and neuronal cell loss. Am J Pathol 164:2163–2174

    Google Scholar 

  86. Rees T, Hammond PI, Soreq H, Younkin S, Brimijoin S (2003) Acetylcholinesterase promotes beta-amyloid plaques in cerebral cortex. Neurobiol Aging 24:777–787

    Google Scholar 

  87. Inestrosa NC, Sagal JP, Colombres M (2005) Acetylcholinesterase interaction with Alzheimer amyloid beta. Subcell Biochem 38:299–317

    Google Scholar 

  88. Inestrosa NC, Dinamarca MC, Alvarez A (2008) Amyloid-cholinesterase interactions. Implications for Alzheimer’s disease. Febs J 275:625–632

    Google Scholar 

  89. Askanas V, Engel WK (2003) Unfolding story of inclusion-body myositis and myopathies: role of misfolded proteins, amyloid-beta, cholesterol, and aging. J Child Neurol 18:185–190

    Google Scholar 

  90. Frears ER, Stephens DJ, Walters CE, Davies H, Austen BM (1999) The role of cholesterol in the biosynthesis of beta-amyloid. Neuroreport 10:1699–1705

    Google Scholar 

  91. Jaworska-Wilczynska M, Wilczynski GM, Engel WK, Strickland DK, Weisgraber KH, Askanas V (2002) Three lipoprotein receptors and cholesterol in inclusion-body myositis muscle. Neurology 58:438–445

    Google Scholar 

  92. Askanas V, Mirabella M, Engel WK, Alvarez RB, Weisgraber KH (1994) Apolipoprotein E immunoreactive deposits in inclusion-body muscle diseases. Lancet 343:364–365

    Google Scholar 

  93. Mirabella M, Alvarez RB, Engel WK, Weisgraber KH, Askanas V (1996) Apolipoprotein E and apolipoprotein E messenger RNA in muscle of inclusion body myositis and myopathies. Ann Neurol 40:864–872

    Google Scholar 

  94. Inestrosa NC, Marzolo MP, Bonnefont AB (1998) Cellular and molecular basis of estrogen’s neuroprotection. Potential relevance for Alzheimer’s disease. Mol Neurobiol 17:73–86

    Google Scholar 

  95. Roses AD, Saunders AM (1997) Apolipoprotein E genotyping as a diagnostic adjunct for Alzheimer’s disease. Int Psychogeriatr 9(Suppl 1):277–288 discussion 317–221

    Google Scholar 

  96. Roses AD (2006) On the discovery of the genetic association of Apolipoprotein E genotypes and common late-onset Alzheimer disease. J Alzheimers Dis 9:361–366

    Google Scholar 

  97. Roses AD (1996) Apolipoprotein E alleles as risk factors in Alzheimer’s disease. Annu Rev Med 47:387–400

    Google Scholar 

  98. Caruso A, Motolese M, Iacovelli L et al (2006) Inhibition of the canonical Wnt signaling pathway by apolipoprotein E4 in PC12 cells. J Neurochem 98:364–371

    Google Scholar 

  99. Gossrau G, Gestrich B, Koch R et al (2004) Apolipoprotein E and alpha-1-antichymotrypsin polymorphisms in sporadic inclusion body myositis. Eur Neurol 51:215–220

    Google Scholar 

  100. Albrecht S, Bilbao JM (1993) Ubiquitin expression in inclusion body myositis. An immunohistochemical study. Arch Pathol Lab Med 117:789–793

    Google Scholar 

  101. Askanas V, Serdaroglu P, Engel WK, Alvarez RB (1991) Immunolocalization of ubiquitin in muscle biopsies of patients with inclusion body myositis and oculopharyngeal muscular dystrophy. Neurosci Lett 130:73–76

    Google Scholar 

  102. Mori H, Kondo J, Ihara Y (1987) Ubiquitin is a component of paired helical filaments in Alzheimer’s disease. Science 235:1641–1644

    Google Scholar 

  103. Perry G, Friedman R, Shaw G, Chau V (1987) Ubiquitin is detected in neurofibrillary tangles and senile plaque neurites of Alzheimer disease brains. Proc Natl Acad Sci U S A 84:3033–3036

    Google Scholar 

  104. Weihl CC, Miller SE, Hanson PI, Pestronk A (2007) Transgenic expression of inclusion body myopathy associated mutant p97/VCP causes weakness and ubiquitinated protein inclusions in mice. Hum Mol Genet 16:919–928

    Google Scholar 

  105. Fratta P, Engel WK, McFerrin J, Davies KJ, Lin SW, Askanas V (2005) Proteasome inhibition and aggresome formation in sporadic inclusion-body myositis and in amyloid-beta precursor protein-overexpressing cultured human muscle fibers. Am J Pathol 167:517–526

    Google Scholar 

  106. Parkin ET, Watt NT, Hussain I et al (2007) Cellular prion protein regulates beta-secretase cleavage of the Alzheimer’s amyloid precursor protein. Proc Natl Acad Sci U S A 104:11062–11067

    Google Scholar 

  107. Gacia M, Safranow K, Styczynska M et al (2006) Prion protein gene M129 allele is a risk factor for Alzheimer’s disease. J Neural Transm 113:1747–1751

    Google Scholar 

  108. Inestrosa NC, Cerpa W, Varela-Nallar L (2005) Copper brain homeostasis: role of amyloid precursor protein and prion protein. IUBMB Life 57:645–650

    Google Scholar 

  109. Varela-Nallar L, Toledo EM, Larrondo LF, Cabral AL, Martins VR, Inestrosa NC (2006) Induction of cellular prion protein gene expression by copper in neurons. Am J Physiol Cell Physiol 290:C271–281

    Google Scholar 

  110. Varela-Nallar L, Gonzalez A, Inestrosa NC (2006) Role of copper in prion diseases: deleterious or beneficial?. Curr Pharm Des 12:2587–2595

    Google Scholar 

  111. Zanusso G, Vattemi G, Ferrari S et al (2001) Increased expression of the normal cellular isoform of prion protein in inclusion-body myositis, inflammatory myopathies and denervation atrophy. Brain Pathol 11:182–189

    Google Scholar 

  112. Kovacs GG, Lindeck-Pozza E, Chimelli L et al (2004) Creutzfeldt-Jakob disease and inclusion body myositis: abundant disease-associated prion protein in muscle. Ann Neurol 55:121–125

    Google Scholar 

  113. Sarkozi E, Askanas V, Engel WK (1994) Abnormal accumulation of prion protein mRNA in muscle fibers of patients with sporadic inclusion-body myositis and hereditary inclusion-body myopathy. Am J Pathol 145:1280–1284

    Google Scholar 

  114. Huang S, Liang J, Zheng M et al (2007) Inducible overexpression of wild-type prion protein in the muscles leads to a primary myopathy in transgenic mice. Proc Natl Acad Sci U S A 104:6800–6805

    Google Scholar 

  115. Bilak M, Askanas V, Engel WK (1993) Strong immunoreactivity of alpha 1-antichymotrypsin co-localizes with beta-amyloid protein and ubiquitin in vacuolated muscle fibers of inclusion-body myositis. Acta Neuropathol 85:378–382

    Google Scholar 

  116. Vattemi G, Engel WK, McFerrin J, Askanas V (2003) Cystatin C colocalizes with amyloid-beta and coimmunoprecipitates with amyloid-beta precursor protein in sporadic inclusion-body myositis muscles. J Neurochem 85:1539–1546

    Google Scholar 

  117. Crawford FC, Freeman MJ, Schinka JA et al (2000) A polymorphism in the cystatin C gene is a novel risk factor for late-onset Alzheimer’s disease. Neurology 55:763–768

    Google Scholar 

  118. Finckh U, von der Kammer H, Velden J et al (2000) Genetic association of a cystatin C gene polymorphism with late-onset Alzheimer disease. Arch Neurol 57:1579–1583

    Google Scholar 

  119. Mao JJ, Katayama S, Watanabe C et al (2001) The relationship between alphaB-crystallin and neurofibrillary tangles in Alzheimer’s disease. Neuropathol Appl Neurobiol 27:180–188

    Google Scholar 

  120. Dabir DV, Trojanowski JQ, Richter-Landsberg C, Lee VM, Forman MS (2004) Expression of the small heat-shock protein alphaB-crystallin in tauopathies with glial pathology. Am J Pathol 164:155–166

    Google Scholar 

  121. Augusteyn RC (2004) alpha-crystallin: a review of its structure and function. Clin Exp Optom 87:356–366

    Article  Google Scholar 

  122. Horwitz J (2003) Alpha-crystallin. Exp Eye Res 76:145–153

    Google Scholar 

  123. Stege GJ, Renkawek K, Overkamp PS et al (1999) The molecular chaperone alphaB-crystallin enhances amyloid beta neurotoxicity. Biochem Biophys Res Commun 262:152–156

    Google Scholar 

  124. Banwell BL, Engel AG (2000) AlphaB-crystallin immunolocalization yields new insights into inclusion body myositis. Neurology 54:1033–1041

    Google Scholar 

  125. Wojcik S, Engel WK, McFerrin J, Paciello O, Askanas V (2006) AbetaPP-overexpression and proteasome inhibition increase alphaB-crystallin in cultured human muscle: relevance to inclusion-body myositis. Neuromuscul Disord 16:839–844

    Google Scholar 

  126. Wilhelmus MM, de Waal RM, Verbeek MM (2007) Heat shock proteins and amateur chaperones in amyloid-Beta accumulation and clearance in Alzheimer’s disease. Mol Neurobiol 35:203–216

    Google Scholar 

  127. Gonzalez-Cadavid NF, Bhasin S (2004) Role of myostatin in metabolism. Curr Opin Clin Nutr Metab Care 7:451–457

    Google Scholar 

  128. Wojcik S, Nogalska A, McFerrin J, Engel WK, Oledzka G, Askanas V (2007) Myostatin precursor protein is increased and associates with amyloid-beta precursor protein in inclusion-body myositis culture model. Neuropathol Appl Neurobiol 33:238–242

    Google Scholar 

  129. Wojcik S, Engel WK, McFerrin J, Askanas V (2005) Myostatin is increased and complexes with amyloid-beta within sporadic inclusion-body myositis muscle fibers. Acta Neuropathol 110:173–177

    Google Scholar 

  130. Miranda S, Opazo C, Larrondo LF et al (2000) The role of oxidative stress in the toxicity induced by amyloid beta-peptide in Alzheimer’s disease. Prog Neurobiol 62:633–648

    Google Scholar 

  131. Thomas T, Thomas G, McLendon C, Sutton T, Mullan M (1996) Beta-amyloid-mediated vasoactivity and vascular endothelial damage. Nature 380:168–171

    Google Scholar 

  132. Opazo C, Huang X, Cherny RA et al (2002) Metalloenzyme-like activity of Alzheimer’s disease beta-amyloid. Cu-dependent catalytic conversion of dopamine, cholesterol, and biological reducing agents to neurotoxic H(2)O(2). J Biol Chem 277:40302–40308

    Google Scholar 

  133. Behl C, Davis JB, Lesley R, Schubert D (1994) Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 77:817–827

    Google Scholar 

  134. Santos MJ, Quintanilla RA, Toro A et al (2005) Peroxisomal proliferation protects from beta-amyloid neurodegeneration. J Biol Chem 280:41057–41068

    Google Scholar 

  135. Ruiz FH, Gonzalez M, Bodini M, Opazo C, Inestrosa NC (1999) Cysteine 144 is a key residue in the copper reduction by the beta-amyloid precursor protein. J Neurochem 73:1288–1292

    Google Scholar 

  136. Oldfors A, Moslemi AR, Jonasson L, Ohlsson M, Kollberg G, Lindberg C (2006) Mitochondrial abnormalities in inclusion-body myositis. Neurology 66:S49–S55

    Google Scholar 

  137. Fukuchi K, Ho L, Younkin SG et al (1996) High levels of circulating beta-amyloid peptide do not cause cerebral beta-amyloidosis in transgenic mice. Am J Pathol 149:219–227

    Google Scholar 

  138. Fukuchi K, Li L, Hart M, Lindsey JR (2000) Accumulation of amyloid-beta protein in exocrine glands of transgenic mice overexpressing a carboxyl terminal portion of amyloid protein precursor. Int J Exp Pathol 81:231–239

    Google Scholar 

  139. Sugarman MC, Yamasaki TR, Oddo S et al (2002) Inclusion body myositis-like phenotype induced by transgenic overexpression of beta APP in skeletal muscle. Proc Natl Acad Sci U S A 99:6334–6339

    Google Scholar 

  140. Sugarman MC, Kitazawa M, Baker M, Caiozzo VJ, Querfurth HW, LaFerla FM (2006) Pathogenic accumulation of APP in fast twitch muscle of IBM patients and a transgenic model. Neurobiol Aging 27:423–432

    Google Scholar 

  141. Kitazawa M, Green KN, Caccamo A, LaFerla FM (2006) Genetically augmenting Abeta42 levels in skeletal muscle exacerbates inclusion body myositis-like pathology and motor deficits in transgenic mice. Am J Pathol 168:1986–1997

    Google Scholar 

  142. Kitazawa M, Trinh DN, Laferla FM (2008) Inflammation induces tau pathology in inclusion body myositis model via glycogen synthase kinase-3beta. Ann Neurol 64:15–24

    Google Scholar 

  143. Feany MB (2000) Studying human neurodegenerative diseases in flies and worms. J Neuropathol Exp Neurol 59:847–856

    Google Scholar 

  144. Link CD (2001) Transgenic invertebrate models of age-associated neurodegenerative diseases. Mech Ageing Dev 122:1639–1649

    Google Scholar 

  145. Link CD (2005) Invertebrate models of Alzheimer’s disease. Genes Brain Behav 4:147–156

    Google Scholar 

  146. Miguel-Aliaga I, Culetto E, Walker DS, Baylis HA, Sattelle DB, Davies KE (1999) The Caenorhabditis elegans orthologue of the human gene responsible for spinal muscular atrophy is a maternal product critical for germline maturation and embryonic viability. Hum Mol Genet 8:2133–2143

    Google Scholar 

  147. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Google Scholar 

  148. Chapin A, Correa P, Maguire M, Kohn R (2007) Synaptic neurotransmission protein UNC-13 affects RNA interference in neurons. Biochem Biophys Res Commun 354:1040–1044

    Google Scholar 

  149. Kamath RS, Ahringer J (2003) Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30:313–321

    Google Scholar 

  150. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Google Scholar 

  151. Faber PW, Alter JR, MacDonald ME, Hart AC (1999) Polyglutamine-mediated dysfunction and apoptotic death of a Caenorhabditis elegans sensory neuron. Proc Natl Acad Sci U S A 96:179–184

    Google Scholar 

  152. Satyal SH, Schmidt E, Kitagawa K et al (2000) Polyglutamine aggregates alter protein folding homeostasis in Caenorhabditis elegans. Proc Natl Acad Sci U S A 97:5750–5755

    Google Scholar 

  153. Lakso M, Vartiainen S, Moilanen AM et al (2003) Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human alpha-synuclein. J Neurochem 86:165–172

    Google Scholar 

  154. Kuwahara T, Koyama A, Gengyo-Ando K et al (2006) Familial Parkinson mutant alpha-synuclein causes dopamine neuron dysfunction in transgenic Caenorhabditis elegans. J Biol Chem 281:334–340

    Google Scholar 

  155. Link CD (1995) Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans. Proc Natl Acad Sci U S A 92:9368–9372

    Google Scholar 

  156. Waterston RH (1998) The nematode Caenorhabditis elegans. In: Wood WB (ed) Cold Spring Harbor monograph series. Cold Spring Harbor Laboratory, NY, pp 281–335

    Google Scholar 

  157. Moerman DG, Williams BD (2006) Sarcomere assembly in C. elegans muscle. WormBook 16:1–16

    Google Scholar 

  158. Francis R, Waterston RH (1991) Muscle cell attachment in Caenorhabditis elegans. J Cell Biol 114:465–479

    Google Scholar 

  159. Lecroisey C, Segalat L, Gieseler K (2007) The C. elegans dense body: anchoring and signaling structure of the muscle. J Muscle Res Cell Motil 28:79–87

    Google Scholar 

  160. Epstein HF (1990) Genetic analysis of myosin assembly in Caenorhabditis elegans. Mol Neurobiol 4:1–25

    Google Scholar 

  161. Castellani L, Vibert P, Cohen C (1983) Structure of myosin/paramyosin filaments from a molluscan smooth muscle. J Mol Biol 167:853–872

    Google Scholar 

  162. Beall CJ, Sepanski MA, Fyrberg EA (1989) Genetic dissection of Drosophila myofibril formation: effects of actin and myosin heavy chain null alleles. Genes Dev 3:131–140

    Google Scholar 

  163. Lu MH, DiLullo C, Schultheiss T et al (1992) The vinculin/sarcomeric-alpha-actinin/alpha-actin nexus in cultured cardiac myocytes. J Cell Biol 117:1007–1022

    Google Scholar 

  164. Francis GR, Waterston RH (1985) Muscle organization in Caenorhabditis elegans: localization of proteins implicated in thin filament attachment and I-band organization. J Cell Biol 101:1532–1549

    Google Scholar 

  165. Gettner SN, Kenyon C, Reichardt LF (1995) Characterization of beta pat-3 heterodimers, a family of essential integrin receptors in C. elegans. J Cell Biol 129:1127–1141

    Google Scholar 

  166. Daigle I, Li C (1993) apl-1, a Caenorhabditis elegans gene encoding a protein related to the human beta-amyloid protein precursor. Proc Natl Acad Sci U S A 90:12045–12049

    Google Scholar 

  167. Styren SD, Hamilton RL, Styren GC, Klunk WE (2000) X-34, a fluorescent derivative of Congo Red: a novel histochemical stain for Alzheimer’s disease pathology. J Histochem Cytochem 48:1223–1232

    Google Scholar 

  168. Link CD, Taft A, Kapulkin V et al (2003) Gene expression analysis in a transgenic Caenorhabditis elegans Alzheimer’s disease model. Neurobiol Aging 24:397–413

    Google Scholar 

  169. Fonte V, Kapulkin V, Taft A, Fluet A, Friedman D, Link CD (2002) Interaction of intracellular beta amyloid peptide with chaperone proteins. Proc Natl Acad Sci U S A 99:9439–9444

    Google Scholar 

  170. Stringham EG, Jones D, Candido EP (1992) Expression of the polyubiquitin-encoding gene (ubq-1) in transgenic Caenorhabditis elegans. Gene 113:165–173

    Google Scholar 

  171. Link CD, Cypser JR, Johnson CJ, Johnson TE (1999) Direct observation of stress response in Caenorhabditis elegans using a reporter transgene. Cell Stress Chaperones 4:235–242

    Google Scholar 

  172. Fonte V, Kipp DR, Yerg J 3rd et al (2008) Suppression of in vivo beta-amyloid peptide toxicity by overexpression of the HSP-16.2 small chaperone protein. J Biol Chem 283:784–791

    Google Scholar 

  173. Westlund B, Parry D, Clover R, Basson M, Johnson CD (1999) Reverse genetic analysis of Caenorhabditis elegans presenilins reveals redundant but unequal roles for sel-12 and hop-1 in Notch-pathway signaling. Proc Natl Acad Sci U S A 96:2497–2502

    Google Scholar 

  174. Levitan D, Doyle TG, Brousseau D et al (1996) Assessment of normal and mutant human presenilin function in Caenorhabditis elegans. Proc Natl Acad Sci U S A 93:14940–14944

    Google Scholar 

  175. Cinar HN, Sweet KL, Hosemann KE, Earley K, Newman AP (2001) The SEL-12 presenilin mediates induction of the Caenorhabditis elegans uterine pi cell fate. Dev Biol 237:173–182

    Google Scholar 

  176. Eimer S, Donhauser R, Baumeister R (2002) The Caenorhabditis elegans presenilin sel-12 is required for mesodermal patterning and muscle function. Dev Biol 251:178–192

    Google Scholar 

  177. Wittenburg N, Eimer S, Lakowski B, Rohrig S, Rudolph C, Baumeister R (2000) Presenilin is required for proper morphology and function of neurons in C. elegans. Nature 406:306–309

    Google Scholar 

  178. Arpagaus M, Combes D, Culetto E et al (1998) Four acetylcholinesterase genes in the nematode Caenorhabditis elegans. J Physiol Paris 92:363–367

    Google Scholar 

  179. Grauso M, Culetto E, Combes D, Fedon Y, Toutant JP, Arpagaus M (1998) Existence of four acetylcholinesterase genes in the nematodes Caenorhabditis elegans and Caenorhabditis briggsae. FEBS Lett 424:279–284

    Google Scholar 

  180. Combes D, Fedon Y, Toutant JP, Arpagaus M (2003) Multiple ace genes encoding acetylcholinesterases of Caenorhabditis elegans have distinct tissue expression. Eur J Neurosci 18:497–512

    Google Scholar 

  181. Drake J, Link CD, Butterfield DA (2003) Oxidative stress precedes fibrillar deposition of Alzheimer’s disease amyloid beta-peptide (1-42) in a transgenic Caenorhabditis elegans model. Neurobiol Aging 24:415–420

    Google Scholar 

  182. Triguero L, Singh R, Prabhakar R (2008) Molecular dynamics study to investigate the effect of chemical substitutions of methionine 35 on the secondary structure of the amyloid beta (Abeta(1-42)) monomer in aqueous solution. J Phys Chem B 112:2159–2167

    Google Scholar 

  183. Hou L, Shao H, Zhang Y et al (2004) Solution NMR studies of the A beta(1-40) and A beta(1-42) peptides establish that the Met35 oxidation state affects the mechanism of amyloid formation. J Am Chem Soc 126:1992–2005

    Google Scholar 

  184. Bitan G, Tarus B, Vollers SS et al (2003) A molecular switch in amyloid assembly: Met35 and amyloid beta-protein oligomerization. J Am Chem Soc 125:15359–15365

    Google Scholar 

  185. Fay DS, Fluet A, Johnson CJ, Link CD (1998) In vivo aggregation of beta-amyloid peptide variants. J Neurochem 71:1616–1625

    Google Scholar 

  186. Yatin SM, Varadarajan S, Link CD, Butterfield DA (1999) In vitro and in vivo oxidative stress associated with Alzheimer’s amyloid beta-peptide (1-42). Neurobiol Aging 20:325–330 discussion 339–342

    Google Scholar 

  187. Hensley K, Hall N, Subramaniam R et al (1995) Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J Neurochem 65:2146–2156

    Article  Google Scholar 

  188. Boyd-Kimball D, Poon HF, Lynn BC et al (2006) Proteomic identification of proteins specifically oxidized in Caenorhabditis elegans expressing human Abeta(1-42): implications for Alzheimer’s disease. Neurobiol Aging 27:1239–1249

    Google Scholar 

  189. Mortimore GE, Schworer CM (1977) Induction of autophagy by amino-acid deprivation in perfused rat liver. Nature 270:174–176

    Google Scholar 

  190. Yu WH, Kumar A, Peterhoff C et al (2004) Autophagic vacuoles are enriched in amyloid precursor protein-secretase activities: implications for beta-amyloid peptide over-production and localization in Alzheimer’s disease. Int J Biochem Cell Biol 36:2531–2540

    Google Scholar 

  191. Yu WH, Cuervo AM, Kumar A et al (2005) Macroautophagy—a novel beta-amyloid peptide-generating pathway activated in Alzheimer’s disease. J Cell Biol 171:87–98

    Google Scholar 

  192. Nixon RA (2007) Autophagy, amyloidogenesis and Alzheimer disease. J Cell Sci 120:4081–4091

    Google Scholar 

  193. Florez-McClure ML, Hohsfield LA, Fonte G, Bealor MT, Link CD (2007) Decreased insulin-receptor signaling promotes the autophagic degradation of beta-amyloid peptide in C. elegans. Autophagy 3:569–580

    Google Scholar 

  194. Wu Y, Wu Z, Butko P et al (2006) Amyloid-beta-induced pathological behaviors are suppressed by Ginkgo biloba extract EGb 761 and ginkgolides in transgenic Caenorhabditis elegans. J Neurosci 26:13102–13113

    Google Scholar 

  195. Soto C, Castano EM, Frangione B, Inestrosa NC (1995) The alpha-helical to beta-strand transition in the amino-terminal fragment of the amyloid beta-peptide modulates amyloid formation. J Biol Chem 270:3063–3067

    Google Scholar 

  196. Nilsberth C, Westlind-Danielsson A, Eckman CB et al (2001) The ‘Arctic’ APP mutation (E693G) causes Alzheimer’s disease by enhanced Abeta protofibril formation. Nat Neurosci 4:887–893

    Google Scholar 

  197. Grez PA (2005) Obtención y análisis de Cepas Transgénicas de C. elegans. Expresión de péptido Aβ wild-type y sus variantes NIC y Arctic Facultad de Ciencias Químicas y Farmacéuticas. Universidad de Chile, Santiago, Chile, p 56

    Google Scholar 

  198. Praitis V, Casey E, Collar D, Austin J (2001) Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics 157:1217–1226

    Google Scholar 

  199. Deibel MA, Ehmann WD, Markesbery WR (1996) Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer’s disease: possible relation to oxidative stress. J Neurol Sci 143:137–142

    Google Scholar 

  200. Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR (1998) Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 158:47–52

    Google Scholar 

  201. Candy JM, Oakley AE, Klinowski J et al (1986) Aluminosilicates and senile plaque formation in Alzheimer’s disease. Lancet 1:354–357

    Google Scholar 

  202. Lovell MA, Ehmann WD, Markesbery WR (1993) Laser microprobe analysis of brain aluminum in Alzheimer’s disease. Ann Neurol 33:36–42

    Google Scholar 

  203. Perl DP, Brody AR (1980) Alzheimer’s disease: X-ray spectrometric evidence of aluminum accumulation in neurofibrillary tangle-bearing neurons. Science 208:297–299

    Google Scholar 

  204. Landsberg JP, McDonald B, Watt F (1992) Absence of aluminium in neuritic plaque cores in Alzheimer’s disease. Nature 360:65–68

    Google Scholar 

  205. Chafi AH, Hauw JJ, Rancurel G, Berry JP, Galle C (1991) Absence of aluminium in Alzheimer’s disease brain tissue: electron microprobe and ion microprobe studies. Neurosci Lett 123:61–64

    Google Scholar 

  206. Good PF, Perl DP, Bierer LM, Schmeidler J (1992) Selective accumulation of aluminum and iron in the neurofibrillary tangles of Alzheimer’s disease: a laser microprobe (LAMMA) study. Ann Neurol 31:286–292

    Google Scholar 

  207. Ferreira PC, Piai Kde A, Takayanagui AM, Segura-Munoz SI (2008) Aluminum as a risk factor for Alzheimer’s disease. Rev Lat Am Enfermagem 16:151–157

    Google Scholar 

  208. Sparks DL, Friedland R, Petanceska S et al (2006) Trace copper levels in the drinking water, but not zinc or aluminum influence CNS Alzheimer-like pathology. J Nutr Health Aging 10:247–254

    Google Scholar 

  209. Miu AC, Benga O (2006) Aluminum and Alzheimer’s disease: a new look. J Alzheimers Dis 10:179–201

    Google Scholar 

  210. Drago D, Bettella M, Bolognin S et al (2008) Potential pathogenic role of beta-amyloid(1-42)-aluminum complex in Alzheimer’s disease. Int J Biochem Cell Biol 40:731–746

    Google Scholar 

  211. Rodella LF, Ricci F, Borsani E et al (2008) Aluminium exposure induces Alzheimer’s disease-like histopathological alterations in mouse brain. Histol Histopathol 23:433–439

    Google Scholar 

  212. Bush AI, Pettingell WH, Multhaup G et al (1994) Rapid induction of Alzheimer A beta amyloid formation by zinc. Science 265:1464–1467

    Google Scholar 

  213. Bush AI, Pettingell WH Jr., Paradis MD, Tanzi RE (1994) Modulation of A beta adhesiveness and secretase site cleavage by zinc. J Biol Chem 269:12152–12158

    Google Scholar 

  214. Cherny RA, Atwood CS, Xilinas ME et al (2001) Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30:665–676

    Google Scholar 

  215. Ritchie CW, Bush AI, Mackinnon A et al (2003) Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch Neurol 60:1685–1691

    Google Scholar 

  216. White AR, Zheng H, Galatis D et al (1998) Survival of cultured neurons from amyloid precursor protein knock-out mice against Alzheimer’s amyloid-beta toxicity and oxidative stress. J Neurosci 18:6207–6217

    Google Scholar 

  217. Maynard CJ, Cappai R, Volitakis I et al (2002) Overexpression of Alzheimer’s disease amyloid-beta opposes the age-dependent elevations of brain copper and iron. J Biol Chem 277:44670–44676

    Google Scholar 

  218. Bayer TA, Schafer S, Simons A et al (2003) Dietary Cu stabilizes brain superoxide dismutase 1 activity and reduces amyloid Abeta production in APP23 transgenic mice. Proc Natl Acad Sci U S A 100:14187–14192

    Google Scholar 

  219. Phinney AL, Drisaldi B, Schmidt SD et al (2003) In vivo reduction of amyloid-beta by a mutant copper transporter. Proc Natl Acad Sci U S A 100:14193–14198

    Google Scholar 

  220. Cerpa WF, Barria MI, Chacon MA et al (2004) The N-terminal copper-binding domain of the amyloid precursor protein protects against Cu2+ neurotoxicity in vivo. FASEB J 18:1701–1703

    Google Scholar 

  221. Cerpa W, Varela-Nallar L, Reyes AE, Minniti AN, Inestrosa NC (2005) Is there a role for copper in neurodegenerative diseases?. Mol Aspects Med 26:405–420

    Google Scholar 

  222. Bush AI, Tanzi RE (2008) Therapeutics for Alzheimer’s disease based on the metal hypothesis. Neurotherapeutics 5:421–432

    Google Scholar 

  223. Tsuruta Y, Furuta A, Taniguchi N, Yamada T, Kira J, Iwaki T (2002) Increased expression of manganese superoxide dismutase is associated with that of nitrotyrosine in myopathies with rimmed vacuoles. Acta Neuropathol 103:59–65

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nibaldo C. Inestrosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rebolledo, D.L., Minniti, A.N., Grez, P.M. et al. Inclusion Body Myositis: A View from the Caenorhabditis elegans Muscle. Mol Neurobiol 38, 178–198 (2008). https://doi.org/10.1007/s12035-008-8041-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-008-8041-0

Keywords

Navigation