Skip to main content
Log in

Botulinum Neurotoxin Type A is Internalized and Translocated from Small Synaptic Vesicles at the Neuromuscular Junction

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Botulinum neurotoxin type A (BoNT/A) is the most frequent cause of human botulism and, at the same time, is largely used in human therapy. Some evidence indicates that it enters inside nerve terminals via endocytosis of synaptic vesicles, though this has not been directly proven. The metalloprotease L chain of the neurotoxin then reaches the cytosol in a process driven by low pH, but the acidic compartment wherefrom it translocates has not been identified. Using immunoelectron microscope, we show that BoNT/A does indeed enter inside synaptic vesicles and that each vesicle contains either one or two toxin molecules. This finding indicates that it is the BoNT/A protein receptor synaptic vesicle protein 2, and not its polysialoganglioside receptor that determines the number of toxin molecules taken up by a single vesicle. In addition, by rapid quenching the vesicle trans-membrane pH gradient, we show that the neurotoxin translocation into the cytosol is a fast process. Taken together, these results strongly indicate that translocation of BoNT/A takes place from synaptic vesicles, and not from endosomal compartments, and that the translocation machinery is operated by no more than two neurotoxin molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Johnson EA, Montecucco C (2008) Botulism. Handb Clin Neurol 91:333–368

    Article  PubMed  Google Scholar 

  2. Arnon SS et al (2001) Botulinum toxin as a biological weapon: medical and public health management. JAMA 285:1059–1070

    Article  PubMed  CAS  Google Scholar 

  3. Lacy DB, Stevens RC (1999) Sequence homology and structural analysis of the clostridial neurotoxins. J Mol Biol 291:1091–1104

    Article  PubMed  CAS  Google Scholar 

  4. Swaminathan S, Eswaramoorthy S (2000) Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B. Nat Struct Biol 7:693–699

    Article  PubMed  CAS  Google Scholar 

  5. Kumaran D, Eswaramoorthy S, Furey W, Navaza J, Sax M, Swaminathan S (2009) Domain organization in Clostridium botulinum neurotoxin type E is unique: its implication in faster translocation. J Mol Biol 386:233–245

    Article  PubMed  CAS  Google Scholar 

  6. Schiavo G, Matteoli M, Montecucco C (2000) Neurotoxins affecting neuroexocytosis. Physiol Rev 80:717–766

    PubMed  CAS  Google Scholar 

  7. Binz T, Rummel A (2009) Cell entry strategy of clostridial neurotoxins. J Neurochem 109:1584–1595

    Article  PubMed  CAS  Google Scholar 

  8. Montal M (2010) Botulinum neurotoxin: a marvel of protein design. Annu Rev Biochem 79:591–617

    Article  PubMed  CAS  Google Scholar 

  9. Montecucco C, Rossetto O, Schiavo G (2004) Presynaptic receptor arrays for clostridial neurotoxins. Trends Microbiol 12:442–446

    Article  PubMed  CAS  Google Scholar 

  10. Dong M, Yeh F, Tepp WH, Dean C, Johnson EA, Janz R, Chapman ER (2006) SV2 is the protein receptor for botulinum neurotoxin A. Science 312:592–596

    Article  PubMed  CAS  Google Scholar 

  11. Mahrhold S, Rummel A, Bigalke H, Davletov B, Binz T (2006) The synaptic vesicle protein 2C mediates the uptake of botulinum neurotoxin A into phrenic nerves. FEBS Lett 580:2011–2014

    Article  PubMed  CAS  Google Scholar 

  12. Rummel A et al (2009) Botulinum neurotoxins C, E and F bind gangliosides via a conserved binding site prior to stimulation-dependent uptake with botulinum neurotoxin F utilising the three isoforms of SV2 as second receptor. J Neurochem 110:1942–1954

    Article  PubMed  CAS  Google Scholar 

  13. Dong M, Liu H, Tepp WH, Johnson EA, Janz R, Chapman ER (2008) Glycosylated SV2A and SV2B mediate the entry of botulinum neurotoxin E into neurons. Mol Biol Cell 19:5226–5237

    Article  PubMed  CAS  Google Scholar 

  14. Fu Z, Chen C, Barbieri JT, Kim JJ, Baldwin MR (2009) Glycosylated SV2 and gangliosides as dual receptors for botulinum neurotoxin serotype F. Biochemistry 48:5631–5641

    Article  PubMed  CAS  Google Scholar 

  15. Nishiki T, Kamata Y, Nemoto Y, Omori A, Ito T, Takahashi M, Kozaki S (1994) Identification of protein receptor for Clostridium botulinum type B neurotoxin in rat brain synaptosomes. J Biol Chem 269:10498–10503

    PubMed  CAS  Google Scholar 

  16. Nishiki T et al (1996) The high-affinity binding of Clostridium botulinum type B neurotoxin to synaptotagmin II associated with gangliosides GT1b/GD1a. FEBS Lett 378:253–257

    Article  PubMed  CAS  Google Scholar 

  17. Dong M, Tepp WH, Liu H, Johnson EA, Chapman ER (2007) Mechanism of botulinum neurotoxin B and G entry into hippocampal neurons. J Cell Biol 179:1511–1522

    Article  PubMed  CAS  Google Scholar 

  18. Rummel A et al (2007) Identification of the protein receptor binding site of botulinum neurotoxins B and G proves the double-receptor concept. Proc Natl Acad Sci USA 104:359–364

    Article  PubMed  CAS  Google Scholar 

  19. Schiavo G, Rossetto O, Benfenati F, Poulain B, Montecucco C (1994) Tetanus and botulinum neurotoxins are zinc proteases specific for components of the neuroexocytosis apparatus. Ann N Y Acad Sci 710:65–75

    Article  PubMed  CAS  Google Scholar 

  20. Niemann H, Blasi J, Jahn R (1994) Clostridial neurotoxins: new tools for dissecting exocytosis. Trends Cell Biol 4:179–185

    Article  PubMed  CAS  Google Scholar 

  21. Matteoli M, Verderio C, Rossetto O, Iezzi N, Coco S, Schiavo G, Montecucco C (1996) Synaptic vesicle endocytosis mediates the entry of tetanus neurotoxin into hippocampal neurons. Proc Natl Acad Sci USA 93:13310–13315

    Article  PubMed  CAS  Google Scholar 

  22. Roux S, Colasante C, Saint Cloment C, Barbier J, Curie T, Girard E, Molgó J, Brulet P (2005) Internalization of a GFP-tetanus toxin C-terminal fragment fusion protein at mature mouse neuromuscular junctions. Mol Cell Neurosci 30:79–89

    Article  PubMed  CAS  Google Scholar 

  23. Verderio C, Grumelli C, Raiteri L, Coco S, Paluzzi S, Caccin P, Rossetto O, Bonanno G, Montecucco C, Matteoli M (2007) Traffic of botulinum toxins A and E in excitatory and inhibitory neurons. Traffic 8:142–153

    Article  PubMed  CAS  Google Scholar 

  24. Montal MS, Blewitt R, Tomich JM, Montal M (1992) Identification of an ion channel-forming motif in the primary structure of tetanus and botulinum neurotoxins. FEBS Lett 313:12–18

    Article  PubMed  CAS  Google Scholar 

  25. Schmid MF, Robinson JP, DasGupta BR (1993) Direct visualization of botulinum neurotoxin-induced channels in phospholipid vesicles. Nature 364:827–830

    Article  PubMed  CAS  Google Scholar 

  26. Montecucco C, Schiavo G (1995) Structure and function of tetanus and botulinum neurotoxins. Q Rev Biophys 28:423–472

    Article  PubMed  CAS  Google Scholar 

  27. Koriazova LK, Montal M (2003) Translocation of botulinum neurotoxin light chain protease through the heavy chain channel. Nat Struct Biol 10:13–18

    Article  PubMed  CAS  Google Scholar 

  28. Montal M (2009) Translocation of botulinum neurotoxin light chain protease by the heavy chain protein-conducting channel. Toxicon 54:565–569

    Article  PubMed  CAS  Google Scholar 

  29. Sun S, Suresh S, Liu H, Tepp WH, Johnson EA, Edwardson JM, Chapman ER (2011) Receptor binding enables botulinum neurotoxin B to sense low pH for translocation channel assembly. Cell Host Microbe 10:237–247

    Article  PubMed  CAS  Google Scholar 

  30. Davletov B, Bajohrs M, Binz T (2005) Beyond BOTOX: advantages and limitations of individual botulinum neurotoxins. Trends Neurosci 28:446–452

    Article  PubMed  CAS  Google Scholar 

  31. Montecucco C, Molgó J (2005) Botulinal neurotoxins: revival of an old killer. Curr Opin Pharmacol 5:274–279

    Article  PubMed  CAS  Google Scholar 

  32. Dressler D (2012) Clinical applications of botulinum toxin. Curr Opin Microbiol 15:325–336

    Article  PubMed  Google Scholar 

  33. Ransom BR, Christian CN, Bullock PN, Nelson PG (1977) Mouse spinal cord in cell culture. II. Synaptic activity and circuit behavior. J Neurophysiol 40:1151–1162

    PubMed  CAS  Google Scholar 

  34. Rigoni M et al (2004) Snake presynaptic neurotoxins with phospholipase A2 activity induce punctate swellings of neurites and exocytosis of synaptic vesicles. J Cell Sci 117:3561–3570

    Article  PubMed  CAS  Google Scholar 

  35. Pirazzini M, Rossetto O, Bolognese P et al (2011) Double anchorage to the membrane and intact inter-chain disulfide bond are required for the low pH induced entry of tetanus and botulinum neurotoxins into neurons. Cell Microbiol 13:1731–1743

    Article  PubMed  CAS  Google Scholar 

  36. Carli L, Montecucco C, Rossetto O (2009) Assay of diffusion of different botulinum neurotoxin type a formulations injected in the mouse leg. Muscle Nerve 40:374–380

    Article  PubMed  CAS  Google Scholar 

  37. Caleo M, Schiavo G (2009) Central effects of tetanus and botulinum neurotoxins. Toxicon 54:593–599

    Article  PubMed  CAS  Google Scholar 

  38. Takamori S et al (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846

    Article  PubMed  CAS  Google Scholar 

  39. Papini E, Rappuoli R, Murgia M, Montecucco C (1993) Cell penetration of diphtheria toxin. Reduction of the interchain disulfide bridge is the rate-limiting step of translocation in the cytosol. J Biol Chem 268:567–574

    Google Scholar 

  40. Menard A, Altendorf K, Breves D, Mock M, Montecucco C (1996) The vacuolar ATPase proton pump is required for the cytotoxicity of Bacillus anthracis lethal toxin. FEBS Lett 386:161–164

    Article  PubMed  CAS  Google Scholar 

  41. Keller JE, Cai F, Neale EA (2004) Uptake of botulinum neurotoxin into cultured neurons. Biochemistry 43:526–532

    Article  PubMed  CAS  Google Scholar 

  42. Sun S, Tepp WH, Johnson EA, Chapman ER (2012) Botulinum neurotoxins B and E translocate at different rates and exhibit divergent responses to GT1b and low pH. Biochemistry 51:5655–5662

    Article  PubMed  CAS  Google Scholar 

  43. Rummel A, Mahrhold S, Bigalke H, Binz T (2004) The HCC-domain of botulinum neurotoxins A and B exhibits a singular ganglioside binding site displaying serotype specific carbohydrate interaction. Mol Microbiol 51:631–643

    Article  PubMed  CAS  Google Scholar 

  44. Antonucci F, Rossi C, Gianfranceschi L, Rossetto O, Caleo M (2008) Long distance retrograde effects of botulinum neurotoxin A. J Neurosci 28:3689–3696

    Article  PubMed  CAS  Google Scholar 

  45. Restani L, Giribaldi F, Bercsenyi K, Manich M, Menedez G, Rossetto O, Caleo M, Schiavo G (2012) Botulinum neurotoxins A and E undergo retrograde axonal transport in primary motor neurons. PLoS Pathog 8:e1003087

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work carried out in the authors' laboratories is supported by grants from the Ministero dell'Università e della Ricerca (Progetto PRIN) and from the University of Padova to OR, from the Progetto Strategico "An in Vivo Approach to the Physiopathology of Signal Transduction" of the University of Padova and from Fondazione CARIPARO "Synaptic Functions and Role of Glial Cells in Brain and Muscle Diseases" to CM, and by a EU VIIth Frame Program grant 241835 to JM.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jordi Molgó or Cesare Montecucco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colasante, C., Rossetto, O., Morbiato, L. et al. Botulinum Neurotoxin Type A is Internalized and Translocated from Small Synaptic Vesicles at the Neuromuscular Junction. Mol Neurobiol 48, 120–127 (2013). https://doi.org/10.1007/s12035-013-8423-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8423-9

Keywords

Navigation