Skip to main content

Advertisement

Log in

Prostaglandin E2 EP1 Receptor Antagonist Improves Motor Deficits and Rescues Memory Decline in R6/1 Mouse Model of Huntington's Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In this study, we evaluated the potential beneficial effects of antagonizing prostaglandin E2 (PGE2) EP1 receptor on motor and memory deficits in Huntington's disease (HD). To this aim, we implanted an osmotic mini-pump system to chronically administrate an EP1 receptor antagonist (SC-51089) in the R6/1 mouse model of HD, from 13 to 18 weeks of age, and used different paradigms to assess motor and memory function. SC-51089 administration ameliorated motor coordination and balance dysfunction in R6/1 mice as analyzed by rotarod, balance beam, and vertical pole tasks. Long-term memory deficit was also rescued after EP1 receptor antagonism as assessed by the T-maze spontaneous alternation and the novel object recognition tests. Additionally, treatment with SC-51089 improved the expression of specific synaptic markers and reduced the number of huntingtin nuclear inclusions in the striatum and hippocampus of 18-week-old R6/1 mice. Moreover, electrophysiological studies showed that hippocampal long-term potentiation was significantly recovered in R6/1 mice after EP1 receptor antagonism. Altogether, these results show that the antagonism of PGE2 EP1 receptor has a strong therapeutic effect on R6/1 mice and point out a new therapeutic candidate to treat motor and memory deficits in HD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. HDCRG (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group. Cell 72:971–983

    Article  Google Scholar 

  2. Vonsattel JP, DiFiglia M (1998) Huntington disease. J Neuropathol Exp Neurol 57:369–384

    Article  CAS  PubMed  Google Scholar 

  3. Lawrence AD, Hodges JR, Rosser AE, Kershaw A, ffrench-Constant C, Rubinsztein DC, Robbins TW, Sahakian BJ (1998) Evidence for specific cognitive deficits in preclinical Huntington's disease. Brain 121(Pt 7):1329–1341

    Article  PubMed  Google Scholar 

  4. Lemiere J, Decruyenaere M, Evers-Kiebooms G, Vandenbussche E, Dom R (2004) Cognitive changes in patients with Huntington's disease (HD) and asymptomatic carriers of the HD mutation—a longitudinal follow-up study. J Neurol 251:935–942

    Article  CAS  PubMed  Google Scholar 

  5. Giralt A, Puigdellivol M, Carreton O, Paoletti P, Valero J, Parra-Damas A, Saura CA, Alberch J, Gines S (2012) Long-term memory deficits in Huntington's disease are associated with reduced CBP histone acetylase activity. Hum Mol Genet 21:1203–1216

    Article  CAS  PubMed  Google Scholar 

  6. Murphy KP, Carter RJ, Lione LA, Mangiarini L, Mahal A, Bates GP, Dunnett SB, Morton AJ (2000) Abnormal synaptic plasticity and impaired spatial cognition in mice transgenic for exon 1 of the human Huntington's disease mutation. J Neurosci 20:5115–5123

    CAS  PubMed  Google Scholar 

  7. Reiner A, Albin RL, Anderson KD, D'Amato CJ, Penney JB, Young AB (1988) Differential loss of striatal projection neurons in Huntington disease. Proc Natl Acad Sci U S A 85:5733–5737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr (1985) Neuropathological classification of Huntington's disease. J Neuropathol Exp Neurol 44:559–577

    Article  CAS  PubMed  Google Scholar 

  9. Rosas HD, Koroshetz WJ, Chen YI, Skeuse C, Vangel M, Cudkowicz ME, Caplan K, Marek K, Seidman LJ, Makris N, Jenkins BG, Goldstein JM (2003) Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology 60:1615–1620

    Article  CAS  PubMed  Google Scholar 

  10. Spargo E, Everall IP, Lantos PL (1993) Neuronal loss in the hippocampus in Huntington's disease: a comparison with HIV infection. J Neurol Neurosurg Psychiatry 56:487–491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Reddy PH, Shirendeb UP (2012) Mutant huntingtin, abnormal mitochondrial dynamics, defective axonal transport of mitochondria, and selective synaptic degeneration in Huntington's disease. Biochim Biophys Acta 1822:101–110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Li JY, Plomann M, Brundin P (2003) Huntington's disease: a synaptopathy? Trends Mol Med 9:414–420

    Article  CAS  PubMed  Google Scholar 

  13. Milnerwood AJ, Cummings DM, Dallerac GM, Brown JY, Vatsavayai SC, Hirst MC, Rezaie P, Murphy KP (2006) Early development of aberrant synaptic plasticity in a mouse model of Huntington's disease. Hum Mol Genet 15:1690–1703

    Article  CAS  PubMed  Google Scholar 

  14. Raymond LA, Andre VM, Cepeda C, Gladding CM, Milnerwood AJ, Levine MS (2011) Pathophysiology of Huntington's disease: time-dependent alterations in synaptic and receptor function. Neuroscience 198:252–273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ross CA, Tabrizi SJ (2011) Huntington's disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 10:83–98

    Article  CAS  PubMed  Google Scholar 

  16. Ahmad AS, Saleem S, Ahmad M, Dore S (2006) Prostaglandin EP1 receptor contributes to excitotoxicity and focal ischemic brain damage. Toxicol Sci 89:265–270

    Article  CAS  PubMed  Google Scholar 

  17. Hewett SJ, Bell SC, Hewett JA (2006) Contributions of cyclooxygenase-2 to neuroplasticity and neuropathology of the central nervous system. Pharmacol Ther 112:335–357

    Article  CAS  PubMed  Google Scholar 

  18. Koch H, Huh SE, Elsen FP, Carroll MS, Hodge RD, Bedogni F, Turner MS, Hevner RF, Ramirez JM (2010) Prostaglandin E2-induced synaptic plasticity in neocortical networks of organotypic slice cultures. J Neurosci 30:11678–11687

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Kotilinek LA, Westerman MA, Wang Q, Panizzon K, Lim GP, Simonyi A, Lesne S, Falinska A, Younkin LH, Younkin SG, Rowan M, Cleary J, Wallis RA, Sun GY, Cole G, Frautschy S, Anwyl R, Ashe KH (2008) Cyclooxygenase-2 inhibition improves amyloid-beta-mediated suppression of memory and synaptic plasticity. Brain 131:651–664

    Article  PubMed Central  PubMed  Google Scholar 

  20. Yang H, Zhang J, Breyer RM, Chen C (2009) Altered hippocampal long-term synaptic plasticity in mice deficient in the PGE2 EP2 receptor. J Neurochem 108:295–304

    Article  PubMed Central  PubMed  Google Scholar 

  21. Breyer RM, Bagdassarian CK, Myers SA, Breyer MD (2001) Prostanoid receptors: subtypes and signaling. Annu Rev Pharmacol Toxicol 41:661–690

    Article  CAS  PubMed  Google Scholar 

  22. Ahmad AS, Ahmad M, de Brum-Fernandes AJ, Dore S (2005) Prostaglandin EP4 receptor agonist protects against acute neurotoxicity. Brain Res 1066:71–77

    Article  CAS  PubMed  Google Scholar 

  23. Bilak M, Wu L, Wang Q, Haughey N, Conant K, St HC, Andreasson K (2004) PGE2 receptors rescue motor neurons in a model of amyotrophic lateral sclerosis. Ann Neurol 56:240–248

    Article  CAS  PubMed  Google Scholar 

  24. McCullough L, Wu L, Haughey N, Liang X, Hand T, Wang Q, Breyer RM, Andreasson K (2004) Neuroprotective function of the PGE2 EP2 receptor in cerebral ischemia. J Neurosci 24:257–268

    Article  CAS  PubMed  Google Scholar 

  25. Carrasco E, Casper D, Werner P (2007) PGE(2) receptor EP1 renders dopaminergic neurons selectively vulnerable to low-level oxidative stress and direct PGE(2) neurotoxicity. J Neurosci Res 85:3109–3117

    Article  CAS  PubMed  Google Scholar 

  26. Kawano T, Anrather J, Zhou P, Park L, Wang G, Frys KA, Kunz A, Cho S, Orio M, Iadecola C (2006) Prostaglandin E2 EP1 receptors: downstream effectors of COX-2 neurotoxicity. Nat Med 12:225–229

    Article  CAS  PubMed  Google Scholar 

  27. Zhen G, Kim YT, Li RC, Yocum J, Kapoor N, Langer J, Dobrowolski P, Maruyama T, Narumiya S, Dore S (2012) PGE2 EP1 receptor exacerbated neurotoxicity in a mouse model of cerebral ischemia and Alzheimer's disease. Neurobiol Aging 33:2215–2219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Kitaoka S, Furuyashiki T, Nishi A, Shuto T, Koyasu S, Matsuoka T, Miyasaka M, Greengard P, Narumiya S (2007) Prostaglandin E2 acts on EP1 receptor and amplifies both dopamine D1 and D2 receptor signaling in the striatum. J Neurosci 27:12900–12907

    Article  CAS  PubMed  Google Scholar 

  29. Andreasson K (2010) Emerging roles of PGE2 receptors in models of neurological disease. Prostaglandins Other Lipid Mediat 91:104–112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies SW, Bates GP (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87:493–506

    Article  CAS  PubMed  Google Scholar 

  31. Giralt A, Rodrigo T, Martin ED, Gonzalez JR, Mila M, Cena V, Dierssen M, Canals JM, Alberch J (2009) Brain-derived neurotrophic factor modulates the severity of cognitive alterations induced by mutant huntingtin: involvement of phospholipaseCgamma activity and glutamate receptor expression. Neuroscience 158:1234–1250

    Article  CAS  PubMed  Google Scholar 

  32. Canals JM, Pineda JR, Torres-Peraza JF, Bosch M, Martin-Ibanez R, Munoz MT, Mengod G, Ernfors P, Alberch J (2004) Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington's disease. J Neurosci 24:7727–7739

    Article  CAS  PubMed  Google Scholar 

  33. Giralt A, Carreton O, Lao-Peregrin C, Martin ED, Alberch J (2011) Conditional BDNF release under pathological conditions improves Huntington's disease pathology by delaying neuronal dysfunction. Mol Neurodegener 6:71

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Ferrante RJ, Andreassen OA, Dedeoglu A, Ferrante KL, Jenkins BG, Hersch SM, Beal MF (2002) Therapeutic effects of coenzyme Q10 and remacemide in transgenic mouse models of Huntington's disease. J Neurosci 22:1592–1599

    CAS  PubMed  Google Scholar 

  35. Giralt A, Saavedra A, Carreton O, Xifro X, Alberch J, Perez-Navarro E (2011) Increased PKA signaling disrupts recognition memory and spatial memory: role in Huntington's disease. Hum Mol Genet 20:4232–4247

    Article  CAS  PubMed  Google Scholar 

  36. Anglada-Huguet M, Giralt A, Perez-Navarro E, Alberch J, Xifro X (2012) Activation of Elk-1 participates as a neuroprotective compensatory mechanism in models of Huntington's disease. J Neurochem 121:639–648

    Article  CAS  PubMed  Google Scholar 

  37. Xifro X, Giralt A, Saavedra A, Garcia-Martinez JM, Diaz-Hernandez M, Lucas JJ, Alberch J, Perez-Navarro E (2009) Reduced calcineurin protein levels and activity in exon-1 mouse models of Huntington's disease: role in excitotoxicity. Neurobiol Dis 36:461–469

    Article  CAS  PubMed  Google Scholar 

  38. Giralt A, Friedman HC, Caneda-Ferron B, Urban N, Moreno E, Rubio N, Blanco J, Peterson A, Canals JM, Alberch J (2010) BDNF regulation under GFAP promoter provides engineered astrocytes as a new approach for long-term protection in Huntington's disease. Gene Ther 17:1294–1308

    Article  CAS  PubMed  Google Scholar 

  39. Martin ED, Buno W (2005) Stabilizing effects of extracellular ATP on synaptic efficacy and plasticity in hippocampal pyramidal neurons. Eur J Neurosci 21:936–944

    Article  PubMed  Google Scholar 

  40. Schwarcz R, Guidetti P, Sathyasaikumar KV, Muchowski PJ (2010) Of mice, rats and men: revisiting the quinolinic acid hypothesis of Huntington's disease. Prog Neurobiol 90:230–245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Nithianantharajah J, Barkus C, Murphy M, Hannan AJ (2008) Gene-environment interactions modulating cognitive function and molecular correlates of synaptic plasticity in Huntington's disease transgenic mice. Neurobiol Dis 29:490–504

    Article  CAS  PubMed  Google Scholar 

  42. Torres-Peraza JF, Giralt A, Garcia-Martinez JM, Pedrosa E, Canals JM, Alberch J (2008) Disruption of striatal glutamatergic transmission induced by mutant huntingtin involves remodeling of both postsynaptic density and NMDA receptor signaling. Neurobiol Dis 29:409–421

    Article  CAS  PubMed  Google Scholar 

  43. Bauer PO, Wong HK, Oyama F, Goswami A, Okuno M, Kino Y, Miyazaki H, Nukina N (2009) Inhibition of Rho kinases enhances the degradation of mutant huntingtin. J Biol Chem 284:13153–13164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Cowin RM, Roscic A, Bui N, Graham D, Paganetti P, Jankowsky JL, Weiss A, Paylor R (2012) Neuronal aggregates are associated with phenotypic onset in the R6/2 Huntington's disease transgenic mouse. Behav Brain Res 229:308–319

    Article  CAS  PubMed  Google Scholar 

  45. Li X, Rose SE, Montine KS, Keene CD, Montine TJ (2012) Antagonism of neuronal prostaglandin E(2) receptor subtype 1 mitigates amyloid beta neurotoxicity in vitro. J Neuroimmune Pharmacol 8(1):87–93

    Article  PubMed Central  PubMed  Google Scholar 

  46. Berridge MJ, Bootman MD, Lipp P (1998) Calcium—a life and death signal. Nature 395:645–648

    Article  CAS  PubMed  Google Scholar 

  47. Wojda U, Salinska E, Kuznicki J (2008) Calcium ions in neuronal degeneration. IUBMB Life 60:575–590

    Article  CAS  PubMed  Google Scholar 

  48. Hansson O, Guatteo E, Mercuri NB, Bernardi G, Li XJ, Castilho RF, Brundin P (2001) Resistance to NMDA toxicity correlates with appearance of nuclear inclusions, behavioural deficits and changes in calcium homeostasis in mice transgenic for exon 1 of the huntington gene. Eur J Neurosci 14:1492–1504

    Article  CAS  PubMed  Google Scholar 

  49. Hodgson JG, Agopyan N, Gutekunst CA, Leavitt BR, LePiane F, Singaraja R, Smith DJ, Bissada N, McCutcheon K, Nasir J, Jamot L, Li XJ, Stevens ME, Rosemond E, Roder JC, Phillips AG, Rubin EM, Hersch SM, Hayden MR (1999) A YAC mouse model for Huntington's disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron 23:181–192

    Article  CAS  PubMed  Google Scholar 

  50. Zhang L, Jiang L, Sun Q, Peng T, Lou K, Liu N, Leng J (2007) Prostaglandin E2 enhances mitogen-activated protein kinase/Erk pathway in human cholangiocarcinoma cells: involvement of EP1 receptor, calcium and EGF receptors signaling. Mol Cell Biochem 305:19–26

    Article  CAS  PubMed  Google Scholar 

  51. Paoletti P, Vila I, Rife M, Lizcano JM, Alberch J, Gines S (2008) Dopaminergic and glutamatergic signaling crosstalk in Huntington's disease neurodegeneration: the role of p25/cyclin-dependent kinase 5. J Neurosci 28:10090–10101

    Article  CAS  PubMed  Google Scholar 

  52. Tang TS, Chen X, Liu J, Bezprozvanny I (2007) Dopaminergic signaling and striatal neurodegeneration in Huntington's disease. J Neurosci 27:7899–7910

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Luthi-Carter R, Apostol BL, Dunah AW, DeJohn MM, Farrell LA, Bates GP, Young AB, Standaert DG, Thompson LM, Cha JH (2003) Complex alteration of NMDA receptors in transgenic Huntington's disease mouse brain: analysis of mRNA and protein expression, plasma membrane association, interacting proteins, and phosphorylation. Neurobiol Dis 14:624–636

    Article  CAS  PubMed  Google Scholar 

  54. Jarabek BR, Yasuda RP, Wolfe BB (2004) Regulation of proteins affecting NMDA receptor-induced excitotoxicity in a Huntington's mouse model. Brain 127:505–516

    Article  PubMed  Google Scholar 

  55. Usdin MT, Shelbourne PF, Myers RM, Madison DV (1999) Impaired synaptic plasticity in mice carrying the Huntington's disease mutation. Hum Mol Genet 8:839–846

    Article  CAS  PubMed  Google Scholar 

  56. Brooks SP, Jones L, Dunnett SB (2012) Comparative analysis of pathology and behavioural phenotypes in mouse models of Huntington's disease. Brain Res Bull 88:81–93

    Article  PubMed  Google Scholar 

  57. Chen X, Wu J, Lvovskaya S, Herndon E, Supnet C, Bezprozvanny I (2011) Dantrolene is neuroprotective in Huntington's disease transgenic mouse model. Mol Neurodegener 6:81

    Article  PubMed Central  PubMed  Google Scholar 

  58. Yamamoto A, Lucas JJ, Hen R (2000) Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. Cell 101:57–66

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are very grateful to Ana Lopez and Maria Teresa Muñoz for technical assistance and to Dr Teresa Rodrigo, Amèrica Jiménez, and the staff of the animal care facility (Facultat de Psicologia and Facultat de Medicina, Universitat de Barcelona) for their help. We thank members of our laboratory for helpful discussion. Financial support was obtained from Ministerio de Economía y Competitividad (SAF2011-29507 and BFU2011-26339), Instituto de Salud Carlos III (PI10/01072), RETICS (CIBERNED, R006/0010/0006), Junta de Comunidades de Castilla-La Mancha, JCCM (PEII10-0095-8727), Generalitat de Catalunya (2009SGR-00326), and INCRECyT project from European Social Fund and JCCM to E.D.M.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordi Alberch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Chronic treatment with SC-51089 in R6/1 mice decreases deficits in motor coordination and balance. At 13 weeks of age, WT and R6/1 mice were treated with SC-51089 (SC; 40 μg/kg/day) or vehicle (discontinuous vertical line). The balance beam task was performed weekly from 13 to 18 weeks of age. The following measurements were recorded: a the mean speed; b the time taken to cross the beam; and c the number of slips. Values are expressed as a mean ± SEM (n = 13 for vehicle and SC-51089-treated WT mice; n = 11 for vehicle-treated R6/1 mice; n = 10 for SC-51089-treated R6/1 mice). Data were analyzed by two-way ANOVA. ***p < 0.001 as compared to WT vehicle-treated mice; $$$ p < 0.001, $$ p < 0.01, and $ p < 0.05, as compared to R6/1 vehicle-treated mice (PDF 85 kb)

Online Resource 2

No changes in anxiety or motivation in R6/1 SC-51089-treated mice. Table showing the covered distance expressed in centimeters (in centimeter) and the percentage of time spent in the center of the open field arena in R6/1 treated with vehicle or SC-51089. Results are expressed as mean ± SEM (n = 13 for vehicle and SC-51089-treated WT mice; n = 11 for vehicle-treated R6/1 mice; n = 10 for SC-51089-treated R6/1 mice) and were analyzed by Student's t test. No significant differences were observed between groups (PDF 63 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anglada-Huguet, M., Xifró, X., Giralt, A. et al. Prostaglandin E2 EP1 Receptor Antagonist Improves Motor Deficits and Rescues Memory Decline in R6/1 Mouse Model of Huntington's Disease. Mol Neurobiol 49, 784–795 (2014). https://doi.org/10.1007/s12035-013-8556-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8556-x

Keywords

Navigation