Skip to main content
Log in

Toward a molecular understanding of nanoparticle–protein interactions

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Wherever nanoparticles (NPs) come in contact with a living organism, physical and chemical interactions take place between the surfaces of the NPs and biomatter, in particular proteins. When NP are exposed to biological fluids, an adsorption layer of proteins, a “protein corona” forms around the NPs. Consequently, living systems interact with the protein-coated NP rather than with a bare NP. To anticipate biological responses to NPs, we thus require comprehensive knowledge of the interactions at the bio–nano interface. In recent years, a wide variety of biophysical techniques have been employed to elucidate mechanistic aspects of NP–protein interactions. In this brief review, we present the latest findings regarding the composition of the protein corona as it forms on NPs in the blood stream. We also discuss molecular aspects of this adsorption layer and its time evolution. The current state of knowledge is summarized, and issues that still need to be addressed to further advance our understanding of NP–protein interactions are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbas K, Cydzik I, Del Torchio R, Farina M, Forti E, Gibson N, Holzwarth U, Simonelli F, Kreyling W (2010) Radiolabelling of TiO2 nanoparticles for radiotracer studies. J Nanopart Res 12:2435–2443

    Article  CAS  Google Scholar 

  • Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M (2006) Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med 56:300–306

    Article  CAS  Google Scholar 

  • Anselmann R (2001) Nanoparticles and nanolayers in commercial applications. J Nanopart Res 3:329–336

    Article  CAS  Google Scholar 

  • Asha Rani PV, Low Kah Mun G, Hande MP, Valiyaveettil S (2008) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290

    Article  Google Scholar 

  • Aubin-Tam M-E, Hamad-Schifferli K (2005) Gold nanoparticle–cytochrome c complexes: the effect of nanoparticle ligand charge on protein structure. Langmuir 21:12080–12084

    Article  PubMed  CAS  Google Scholar 

  • Baier G, Costa C, Zeller A, Baumann D, Sayer C, Araujo PHH, Mailänder V, Musyanovych A, Landfester K (2011) BSA adsorption on differently charged polystyrene nanoparticles using isothermal titration calorimetry and the influence on cellular uptake. Macromol Biosci 11:628–638

    Article  PubMed  CAS  Google Scholar 

  • Barnard AS (2006) Nanohazards: knowledge is our first defence. Nat Mater 5(4):245–248

    Article  PubMed  CAS  Google Scholar 

  • Baron MH, Revault M, Servagent-Noinville S, Abadie J, Qui-Quampoix HJ (1999) Chymotrypsin adsorption on montmorillonite: enzymatic activity and kinetic FTIR structural analysis. J Coll Interf Sci 214:319–332

    Article  CAS  Google Scholar 

  • Brandes N, Welzel PB, Werner C, Kroh LW (2006) Adsorption-induced conformational changes of proteins onto ceramic particles: differential scanning calorimetry and FTIR analysis. J Coll Interf Sci 299:56–69

    Article  CAS  Google Scholar 

  • Carpenter JF, Randolph TW, Jiskoot W, Crommelin DJA, Middaugh CR, Winter G (2010) Potential inaccurate quantitation and sizing of protein aggregates by size exclusion chromatography: essential need to use orthogonal methods to assure the quality of therapeutic protein products. J Pharmaceut Sci 99(5):2200–2208

    Article  CAS  Google Scholar 

  • Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes V (2010) Time evolution of the nanoparticle protein corona. ACS Nano 4(7):3623–3632

    Article  PubMed  CAS  Google Scholar 

  • Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes VF (2011) Hardening of the nanoparticle–protein corona in metal (Au, Ag) and oxide (Fe3O4, CoO, and CeO2) nanoparticles. Small 7(24):3479–3486

    Article  PubMed  CAS  Google Scholar 

  • Cedervall T, Lynch I, Foy M, Berggård T, Donnelly SC, Cagney G, Linse S, Dawson KA (2007a) Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew Chem Int Ed 46:5754–5756

    Article  CAS  Google Scholar 

  • Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, Dawson KA, Linse S (2007b) Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104(7):2050–2055

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Wang M, Borghs G, Chen H (2011) Gold nanoparticle dimers for plasmon sensing. Langmuir 27:7884–7891

    Article  PubMed  CAS  Google Scholar 

  • Chithrani BD, Chan WCW (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7(6):1542–1550

    Article  PubMed  CAS  Google Scholar 

  • Chittur KK (1998) FTIR/ATR for protein adsorption to biomaterial surfaces. Biomaterials 19(4–5):357–369

    Article  PubMed  CAS  Google Scholar 

  • De Paoli Lacerda SH, Park JJ, Meuse C, Pristinski D, Becker ML, Karim A, Douglas JF (2010) Interaction of gold nanoparticles with common human blood proteins. ACS Nano 4(1):365–379

    Article  Google Scholar 

  • Des Rieux A, Fievez V, Garinot M, Schneider Y-J, Préat V (2006) Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release 116:1–27

    Article  PubMed  CAS  Google Scholar 

  • Ehrenberg MS, Friedman AE, Finkelstein JN, Oberdörster G, McGrath JL (2009) The influence of protein adsorption on nanoparticle association with cultured endothelial cells. Biomaterials 30(4):603–610

    Article  PubMed  CAS  Google Scholar 

  • Fillafer C, Friedl DS, Ilyes AK, Wirth M, Gabor F (2009) Bionanoprobes to study particle-cell interactions. J Nanosci Nanotechnol 9:3239–3245

    Article  PubMed  CAS  Google Scholar 

  • Geiser M, Rothen-Rutishauser B, Kapp N, Schürch S, Kreyling W, Schulz H, Semmler M, Im Hof V, Heyder J, Gehr P (2005) Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113(11):1555–1560

    Article  PubMed  Google Scholar 

  • Gilbert B, Huang F, Zhang H, Waychunas GA, Banfield JF (2004) Nanoparticles: strained and stiff. Science 305(5684):651–654

    Article  PubMed  CAS  Google Scholar 

  • Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15:897–900

    Article  PubMed  CAS  Google Scholar 

  • Greenfield NJ (1999) Applications of circular dichroism in protein and peptide analysis. Trends Anal Chem 18(4):236–244

    Article  CAS  Google Scholar 

  • Greulich C, Kittler S, Epple M, Muhr G, Köller M (2009) Studies on the biocompatibility and the interaction of silver nanoparticles with human mesenchymal stem cells (hMSCs). Langenbecks Arch Surg 394:495–502

    Article  PubMed  CAS  Google Scholar 

  • Handy RD, Henry TB, Scrown TM, Johnston BD, Tyler CR (2008a) Manufactured nanoparticles: their uptake and effects on fish—a mechanistic analysis. Ecotoxicology 17(5):396–409

    Article  PubMed  CAS  Google Scholar 

  • Handy RD, von der Kammer F, Lead JR, Hassellöv M, Owen R, Crane M (2008b) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314

    Article  PubMed  CAS  Google Scholar 

  • Harris JM, Martin NE, Modi M (2001) Pegylation: a novel process for modifying pharmacokinetics. Clin Pharmacokinet 40:539–551

    Article  PubMed  CAS  Google Scholar 

  • Havel HA (1996) Spectroscopic methods for determining protein structure in solution. Wiley-VCH, New York

    Google Scholar 

  • Jeong SK, Kwon MS, Lee EY, Lee HJ, Cho SY, Kim H, Yoo JS, Omenn GS, Aebersold R, Hanash S, Paik YK (2009) BiomarkerDigger: a versatile disease proteome database and analysis platform for the identification of plasma cancer biomarkers. Proteomics 9(14):3729–3740

    Article  PubMed  CAS  Google Scholar 

  • Jiang X, Weise S, Hafner M, Röcker C, Zhang F, Parak WJ, Nienhaus GU (2010) Quantitative analysis of the protein corona on FePt nanoparticles formed by transferrin binding. J R Soc Interface 7:S5–S13

    Article  PubMed  CAS  Google Scholar 

  • Kah JC, Wong KY, Neoh KG, Song JH, Fu JW, Mhaisalkar S, Olivo M, Sheppard CJ (2009) Critical parameters in the pegylation of gold nanoshells for biomedical applications: an in vitro macrophage study. J Drug Target 17:181–193

    Article  PubMed  CAS  Google Scholar 

  • Keller KH (2007) Nanotechnology and society. J Nanopart Res 9:5–10

    Article  Google Scholar 

  • Kelly SM, Jess TJ, Price NC (2005) How to study proteins by circular dichroism. Biochim Biophys Acta 1751:119–139

    PubMed  CAS  Google Scholar 

  • Kittler S, Greulich C, Diendorf J, Köller M, Epple M (2010a) The toxicity of silver nanoparticles increases during storage due to slow dissolution under release of silver ions. Chem Mater 22(16):4548–4554

    Article  CAS  Google Scholar 

  • Kittler S, Greulich C, Gebauer JS, Diendorf J, Treuel L, Ruiz L, Gonzalez-Calbet JM, Vallet-Regi M, Zellner R, Köller M, Epple M (2010b) The influence of proteins on the dispersability and cell-biological activity of silver nanoparticles. J Mater Chem 20(3):512–518

    Article  CAS  Google Scholar 

  • Klein J (2007) Probing the interactions of proteins and nanoparticles. Proc Natl Acad Sci USA 104(7):2029–2030

    Article  PubMed  CAS  Google Scholar 

  • Kreyling WG, Semmler M, Möller W (2004) Dosimetry and toxicology of ultrafine particles. J Aerosol Med 17(2):140–152

    Article  PubMed  CAS  Google Scholar 

  • Leszczynski J (2010) Bionanoscience: nano meets bio at the interface. Nat Nanotechnol 5(9):633–634

    Article  PubMed  CAS  Google Scholar 

  • Linse S, Cabaleiro-Lago C, Xue W-F, Lynch I, Lindman S, Thulin E, Radford SE, Dawson KA (2007) Nucleation of protein fibrillation by nanoparticles. Proc Natl Acad Sci USA 104(21):8691–8696

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Xu K, Wang H, Tan PKJ, Fan W, Venkatraman SS, Li L, Yang Y-Y (2009) Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat Nanotechnol 4:457–463

    Article  PubMed  CAS  Google Scholar 

  • Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105(38):14265–14270

    Article  PubMed  CAS  Google Scholar 

  • Lundqvist M, Stigler J, Cedervall T, Berggård T, Flanagan MB, Lynch I, Elia G, Dawson K (2011) The evolution of the protein corona around nanoparticles: a test study. ACS Nano 5(9):7503–7509

    Article  PubMed  CAS  Google Scholar 

  • Lunov O, Syrovets T, Röcker C, Tron K, Nienhaus GU, Rasche V, Mailänder V, Landfester K, Simmet T (2010) Lysosomal degradation of the carboxydextran shell of coated superparamagnetic iron oxide nanoparticles and the fate of professional phagocytes. Biomaterials 31(34):9015–9022

    Article  PubMed  CAS  Google Scholar 

  • Lunov O, Zablotskii V, Syrovets T, Röcker C, Tron K, Nienhaus GU, Simmet T (2011) Modeling receptor-mediated endocytosis of polymer-functionalized iron oxide nanoparticles by human macrophages. Biomaterials 32(2):547–555

    Article  PubMed  CAS  Google Scholar 

  • Lynch I (2007) Are there generic mechanisms governing interactions between nanoparticles and cells? Random epitope mapping for the outer layer of the protein-material interface. Physica A 373:511–520

    Article  CAS  Google Scholar 

  • Lynch I, Dawson KA, Linse S (2006) Detecting cryptic epitopes created by nanoparticles. Sci STKE 2006(327):14

    Article  Google Scholar 

  • Maffre P, Nienhaus K, Amin F, Parak WJ, Nienhaus GU (2011) Characterization of protein adsorption onto FePt nanoparticles using dual-focus fluorescence correlation spectroscopy. Beilstein J Nanotechnol 2:374–383

    Article  PubMed  CAS  Google Scholar 

  • Mátyus L, Szöllösi J, Jenei A (2006) Steady-state fluorescence quenching applications for studying protein structure and dynamics. J Photochem Photobiol B: Biol 83:223–236

    Article  Google Scholar 

  • Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldsen K, Oberdörster G, Philbert MA, Ryan J, Seaton A, Stone V, Tinkle SS, Tran L, Walker NJ, Warheit DB (2006) Safe handling of nanotechnology. Nature 444:267–269

    Article  PubMed  CAS  Google Scholar 

  • Medintz IL, Konnert JH, Clapp AR, Stanish I, Twing ME, Mattoussi H, Mauro JM, Deschamps JR (2004) A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly. Proc Natl Acad Sci USA 101(26):9612–9617

    Article  PubMed  CAS  Google Scholar 

  • Min Y, Akbulut M, Kristiansen K, Golan Y, Israelachvili J (2008) The role of interparticle and external forces in nanoparticle assembly. Nat Mater 7(7):527–538

    Article  PubMed  CAS  Google Scholar 

  • Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Bombelli FB, Dawson KA (2011) Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 133(8):2525–2534

    Article  PubMed  CAS  Google Scholar 

  • Mori S, Barth HG (1999) Size exclusion chromatography. Springer, Berlin

    Google Scholar 

  • Nativo P, Prior IA, Brust M (2008) Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano 2:1639–1644

    Article  PubMed  CAS  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  PubMed  CAS  Google Scholar 

  • Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8(7):543–557

    Article  PubMed  CAS  Google Scholar 

  • Nienhaus GU (ed) (2005) Protein-ligand interactions: methods and applications. Humana Press, New York

    Google Scholar 

  • Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, Katayama Y, Niidome Y (2006) PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release 114:343–347

    Article  PubMed  CAS  Google Scholar 

  • Oberdörster G (2010) Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med 267(1):89–105

    Article  PubMed  Google Scholar 

  • Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H (2005a) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2(8):1–35

    Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005b) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839

    Article  PubMed  Google Scholar 

  • Organization for Economic Co-operation and Development (OECD) (2008) Current developments/activities on the safety of manufactured nanomaterials. OECD environment, health and safety publication series on the safety of manufactured nanomaterials. OECD, Paris

  • Owen R, Depledge M (2005) Nanotechnology in the environment: risks and rewards. Mar Pollut Bull 50:609–612

    Article  PubMed  CAS  Google Scholar 

  • Owens DE, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102

    Article  PubMed  CAS  Google Scholar 

  • Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3:1941–1949

    Article  PubMed  CAS  Google Scholar 

  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A, Stone V, Brown S, Macnee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestoslike pathogenicity in a pilot study. Nature 3:423–428

    CAS  Google Scholar 

  • Printz M, Friess W (2012) Simultaneous detection and analysis of protein aggregation and protein unfolding by size exclusion chromatography with post column addition of the fluorescent dye BisANS. J Pharmaceut Sci 101(2):826–837

    Article  CAS  Google Scholar 

  • Roach P, Farrar D, Perry CC (2006) Surface tailoring for controlled protein adsorption: effect of topography at the nanometer scale and chemistry. J Am Chem Soc 128(12):3939–3945

    Article  PubMed  CAS  Google Scholar 

  • Röcker C, Pötzl M, Zhang F, Parak WJ, Nienhaus GU (2009) A quantitative fluoresence study of protein monolayer formation on colloidal nanoparticles. Nat Nanotechnol 4(9):577–580

    Article  PubMed  Google Scholar 

  • Roco MC (2008) The journal of nanoparticle research at 10 years. J Nanopart Res 10(1):1–2

    Article  Google Scholar 

  • Rodriguez CE, Fukuto JM, Taguchi K, Froines J, Cho AK (2005) The interactions of 9,10-phenantrenequinone with glyceraldehyde-3-phosphatedehydrogenase (GAPDH), a potential site for toxic actions. Chem Biol Interact 155(1):97–110

    Article  PubMed  CAS  Google Scholar 

  • Rothen-Rutishauser B, Kiama S, Gehr P (2005) A three-dimensional cellular model of the human respiratory tract to study the interaction with particles. Am J Respir Cell Mol Biol 32(4):281–289

    Article  PubMed  CAS  Google Scholar 

  • Royer CA (2006) Probing protein folding and conformational transitions with fluorescence. Chem Rev 106:1769–1784

    Article  PubMed  CAS  Google Scholar 

  • Schlücker S (2008) Gezielte Proteinlokalisierung. Biophotonik 3:18–20

    Google Scholar 

  • Semmler-Behnke M, Takenaka S, Fertsch S, Wenk A, Seitz J, Mayer P, Oberdoerster G, Kreyling WG (2007) Efficient elimination of inhaled nanoparticles from the alveolar region: evidence for interstitial uptake and subsequent reentrainment onto airways epithelium. Environ Health Perspect 115(5):728–733

    Article  PubMed  CAS  Google Scholar 

  • Service RF (2006) Priorities needed for nano-risk research and development. Science 314:45

    Article  PubMed  CAS  Google Scholar 

  • Shang L, Wang Y, Jiang J, Dong S (2007) pH-dependent protein conformational changes in albumin—gold nanoparticle bioconjugates: a spectroscopic study. Langmuir 23:2714–2721

    Article  PubMed  CAS  Google Scholar 

  • Shang W, Nuffer JH, Muñiz-Papandrea VA, Colón W, Siegel RW, Dordick JS (2009) cytochrome c on silica nanoparticles: influence of nanoparticle size on protein structure, stability, and activity. Small 5(4):470–476

    Article  PubMed  CAS  Google Scholar 

  • Shang L, Brandholt S, Stockmar F, Trouillet V, Bruns M, Nienhaus GU (2011a) Effect of protein adsorption on the fluorescence of ultrasmall gold nanoclusters. Small. doi:10.1002/smll.201101353

  • Shang L, Doerlich RM, Brandholt S, Schneider R, Trouillet V, Bruns M, Gerthsen D, Nienhaus GU (2011b) Facile preparation of water-soluble fluorescent gold nanoclusters for cellular imaging applications. Nanoscale 3(5):2009–2014

    Article  PubMed  CAS  Google Scholar 

  • Shang L, Dong S, Nienhaus GU (2011c) Ultra-small fluorescent metal nanoclusters: synthesis and biological applications. Nano Today 6(4):401–418

    Article  CAS  Google Scholar 

  • Shao M, Lu L, Wang H, Luo S, Duo Duo Ma D (2009) Microfabrication of a new sensor based on silver and silicon nanomaterials, and its application to the enrichment and detection of bovine serum albumin via surface-enhanced Raman scattering. Microchim Acta 164:157–160

    Article  CAS  Google Scholar 

  • Tenzer S, Docter D, Rosfa S, Wlodarski A, Kuharev J, Rekik A, Knauer SK, Bantz C, Nawroth T, Bier C, Sirirattanapan J, Mann W, Treuel L, Zellner R, Maskos M, Schild H, Stauber RH (2011) Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano 5(9):7155–7167

    Article  PubMed  CAS  Google Scholar 

  • Treuel L, Malissek M, Gebauer JS, Zellner R (2010) The influence of surface composition of nanoparticles on their interactions with serum albumin. Chem Phys Chem 11(14):3093–3099

    Article  PubMed  CAS  Google Scholar 

  • Vertegel AA, Siegel RW, Dordic JS (2004) Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20(16):6800–6807

    Article  PubMed  CAS  Google Scholar 

  • Vogt A, D’Angelo C, Oswald F, Denzel A, Mazel CH, Matz MV, Ivanchenko S, Nienhaus GU, Wiedenmann J (2008) A green fluorescent protein with photoswitchable emission from the deep sea. PLoS One 3(11):1–8

    Article  Google Scholar 

  • Wang T, Bai J, Jiang X, Nienhaus GU (2012) Cellular uptake of nanoparticles by membrane penetration: a study combining confocal microscopy with FTIR spectroelectrochemistry. ACS Nano. doi:10.1021/nn203892h

  • Watari F, Takashi N, Yokoyama A, Uo M, Akasaka M, Sato Y, Abe S, Totsuka Y, Tohji K (2009) Material nanosizing effect on living organism: non-specific, biointeractive, physical size effects. J R Soc Interf 6:371–388

    Article  Google Scholar 

  • Wiedenmann J, Schenk A, Röcker C, Girod A, Spindler KD, Nienhaus GU (2002) A far-red fluorescent protein with fast maturation and reduced oligomerization tendency from Entacmaea quadricolor (Anthozoa, Actinaria). Prod Natl Acad Sci USA 99:11646–11651

    Article  CAS  Google Scholar 

  • Wiedenmann J, Ivanchenko S, Oswald F, Nienhaus GU (2004) Identification of GFP-like proteins in nonbioluminescent, azooxanthellate anthozoa opens new perspectives for bioprospecting. Mar Biotechnol 6:270–277

    Article  PubMed  CAS  Google Scholar 

  • Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40:4336–4345

    Article  PubMed  CAS  Google Scholar 

  • Yan M, Du J, Gu Z, Liang M, Hu Y, Zhang W, Priceman S, Wu L, Hong Zhou Z, Liu H, Segura T, Tang Y, Lu Y (2009) A novel intracellular protein delivery platform based on single-protein nanocapsules. Nat Nanotechnol 5:48–53

    Article  PubMed  Google Scholar 

  • Ye-Qin Z, Wang Y-F, Jiang X-D (2008) The application of nanoparticles in biochips. Recent Patents Biotechnol 2(1):55–59

    Article  Google Scholar 

  • Zhang J, Yan YB (2005) Probing conformational changes of proteins by quantitative second-derivative infrared spectroscopy. Anal Biochem 340:89–98

    Article  PubMed  CAS  Google Scholar 

  • Zhou HS, Aoki S, Honma I, Hirasawa M, Nagamune T, Komiyama H (1997) Conformational change of protein cytochrome b-562 adsorbed on colloidal gold particles; absorption band shift. Chem Commun. 605–606

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) through the Center for Functional Nanostructures (CFN) and the Priority Program SPP1313.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lennart Treuel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Treuel, L., Nienhaus, G.U. Toward a molecular understanding of nanoparticle–protein interactions. Biophys Rev 4, 137–147 (2012). https://doi.org/10.1007/s12551-012-0072-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-012-0072-0

Keywords

Navigation