Skip to main content
Log in

Protective Effect of Curcumin and its Combination with Piperine (Bioavailability Enhancer) Against Haloperidol-Associated Neurotoxicity: Cellular and Neurochemical Evidence

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Long-term treatment with haloperidol is associated with a number of extrapyramidal side effects, particularly the irregular movements of chorionic type. This limitation presents a marked therapeutic challenge. The present study investigates the molecular etiology of haloperidol neurotoxicity and the role of curcumin, a well-known anti-oxidant, in ameliorating these adverse effects. The redox status of haloperidol-treated brains along with NO, TNF-α, NF-kappaB p65 subunit, caspase-3, and monoamine neurotransmitters were measured in the striatum of rat brain. Chronic treatment with haloperidol (5 mg/kg, i.p., 21 days) produced orofacial dyskinetic movements which were coupled with marked increase in oxidative stress parameters, TNF-α, caspase-3 activity in cytoplasmic lysate and active p65 sub unit of NF-kappaB in nuclear lysates of the striatum. Neurochemically, chronic administration of haloperidol resulted in a significant decrease in the levels of norepinephrine, dopamine, and serotonin. The prototype atypical anti-psychotic, clozapine (10 mg/kg, i.p., 21 days) produced mild oxidative stress but did not alter any other parameters. Interestingly, co-administration of curcumin (25 and 50 mg/kg, i.p., 21 days) dose-dependently prevented all the behavioral, cellular, and neurochemical changes associated with the chronic administration of haloperidol. Curcumin per se (50 mg/kg) did not show any side effects. Co-administration of piperine significantly enhanced the effect of curcumin (25 mg/kg) but not of curcumin (50 mg/kg). Collectively, the data indicated the potential of curcumin as an adjunct to haloperidol treatment and provided initial clues to the underlying molecular mechanisms in haloperidol neurotoxicity. This study also provides a rationale for the combination of piperine and curcumin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aggarwal BB (2000) Tumor necrosis factors receptor associated signalling molecules and their role in activation of apoptosis, JNK and NF-kappaB. Ann Rheum D 59(Suppl 1):6–16

    Article  Google Scholar 

  • Aggarwal BB, Shishodia S (2004) Suppression of the nuclear factor-kappaB activation pathway by spice-derived phytochemicals: reasoning for seasoning. Ann N Y Acad Sci 1030:434–441

    Article  PubMed  CAS  Google Scholar 

  • Aggarwal BB, Shishodia S, Ashikawa K, Bharti AC (2002) The role of TNF and its family members in inflammation and cancer: lessons from gene deletion. Curr Drug Targets Inflamm Allergy 1(4):327–341

    Article  PubMed  CAS  Google Scholar 

  • Araujo CAC, Leon LL (2001) Biological activities of Curcuma longa L. Mem Inst Oswaldo Cruz 6(5):723–728

    Article  Google Scholar 

  • Arends MJ, Morris RG, Wyllie AH (1990) Apoptosis. The role of the endonuclease. Am J Pathol 136:593–608

    PubMed  CAS  Google Scholar 

  • Atal CK, Dubey RK, Singh JJ (1985) Biochemical basis of enhanced drug bioavailability by piperine: evidence that piperine is a potent inhibitor of drug metabolism. Pharmacol Exp Ther 232:258–262

    CAS  Google Scholar 

  • Babior BM, Kipner RS, Cerutte JT (1973) Biological defense mechanism. The production by leukocytes of superoxide, a potential bacterial agent. J Clin Investig 52:741–744

    Article  PubMed  CAS  Google Scholar 

  • Balasubramanyam M, Koteswari AA, Kumar RS, Monickaraj SF, Maheswari JU, Mohan V (2003) Curcumin induced inhibition of cellular reactive oxygen species generation: novel therapeutic implications. J Biosci 28:715–721

    Article  PubMed  CAS  Google Scholar 

  • Bishnoi M, Chopra K, Kulkarni SK (2007a) Possible anti-oxidant and neuroprotective mechanisms of zolpidem in attenuating typical anti-psychotic-induced orofacial dyskinesia—a biochemical and neurochemical study. Prog Neuropsychopharmacol Biol Psychiatry 31(5):1130–1138

    Article  PubMed  CAS  Google Scholar 

  • Bishnoi M, Kumar A, Chopra K, Kulkarni SK (2007b) Comparative neurochemical changes associated with chronic administration of typical and atypical neuroleptics: implications in tardive dyskinesia. Indian J Exp Biol 45(2):175–179

    PubMed  CAS  Google Scholar 

  • Bishnoi M, Chopra K, Kulkarni SK (2008a) Protective effect of Curcumin, the active principle of turmeric (Curcuma longa) in haloperidol-induced orofacial dyskinesia and associated behavioural, biochemical and neurochemical changes in rat brain. Pharmacol Biochem Behav 88:511–520

    Article  PubMed  CAS  Google Scholar 

  • Bishnoi M, Chopra K, Kulkarni SK (2008b) Activation of striatal inflammatory mediators and caspase-3 is central to haloperidol-induced orofacial dyskinesia. Eur J Pharmacol 590(1–3):241–245

    Article  PubMed  CAS  Google Scholar 

  • Burger MBE, Fachineto R, Alves A, Callegari L, Rocha JBT (2005) Acute reserpine and sub-chronic haloperidol treatments change synaptosomal brain glutamate uptake and elicit orofacial dyskinesia in rats. Brain Res 1031(2):202–210

    Article  PubMed  CAS  Google Scholar 

  • Burkhardt C, Kelly JP, Lim YH, Filley CM, Parker WD (1993) Neuroleptic medications inhibit complex II of the electron transport chain. Ann Neurol 33:512–517

    Article  PubMed  CAS  Google Scholar 

  • Cara DB, Dusticier N, Forni C, Lievens JC, Daszuta A (2001) Serotonin depletion produces long lasting increase in striatal glutamatergic transmission. J Neurochem 78:240–248

    Article  PubMed  Google Scholar 

  • Cho JW, Lee KS, Kim CW (2007) Curcumin attenuates the expression of IL-1beta, IL-6, and TNF-alpha as well as cyclin E in TNF-alpha-treated HaCaT cells; NF-kappaB and MAPKs as potential upstream targets. Int J Mol Med 19(3):469–474

    PubMed  CAS  Google Scholar 

  • Church WH (2005) Column chromatography analysis of brain tissue: an advanced laboratory exercise for neuroscience majors. J Undergrad Neurosci Educ 3(2):A36–A41

    Google Scholar 

  • Cosi C, Waget A, Rollet K, Tesori V, Newman-Tancredi A (2005) Clozapine, ziprasidone and aripiprazole but not haloperidol protect against kainic acid-induced lesion of the striatum in mice, in vivo: role of 5-HT1A receptor activation. Brain Res 1043(1–2):32–41

    Article  PubMed  CAS  Google Scholar 

  • Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262(5134):689–695

    Article  PubMed  CAS  Google Scholar 

  • Creese I, Burt D, Snyder SH (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192:481–483

    Article  PubMed  CAS  Google Scholar 

  • Cummings TJ, Walker PD (1996) Serotonin depletion exacerbates changes in striatal gene expression following quinolinic acid injection. Brain Res 743(1–2):240–248

    Article  PubMed  CAS  Google Scholar 

  • De Leon J, Susce MT, Pan RM, Koch WH, Wedlund PJ (2005) Polymorphic variations in GSTM1, GSTT1, PgP, CYP2D6, CYP3A5, and dopamine D2 and D3 receptors and their association with tardive dyskinesia in severe mental illness. J Clin Psychopharmacol 25(5):448–456

    Article  PubMed  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Google Scholar 

  • Garcea G, Jones DJ, Singh R, Dennison AR, Farmer PB, Sharma RA, Steward WP, Gescher AJ, Berry DP (2004) Detection of curcumin and its metabolites in hepatic tissue and portal blood of patients following oral administration. Br J Cancer 90:1011–1015

    Article  PubMed  CAS  Google Scholar 

  • Guerin-Marchand C, Sénéchal H, Pelletier C, Fohrer H, Olivier R, David B, Berthon B (2001) H2O2 impairs inflammatory mediator release from immunologically stimulated RBL-2H3 cells through a redox-sensitive, calcium-dependent mechanism. Inflamm Res 150:341–349

    Article  Google Scholar 

  • Guthmann F, Wissel H, Schachtrup C, Tölle A, Rüdiger M, Spener F, Rüstow B (2005) Inhibition of TNFalpha in vivo prevents hyperoxia-mediated activation of caspase 3 in type II cells. Respir Res 6:10

    Article  PubMed  Google Scholar 

  • Hoehle SI, Pfeiffer E, Solyom AM, Metzler M (2006) Metabolism of curcuminoids in tissue slices and subcellular fractions from rat liver. J Agric Food Chem 54:756–764

    Article  PubMed  CAS  Google Scholar 

  • Jarskog LF, Selinger ES, Lieberman JA, Gilmore JH (2004) Apoptotic proteins in the temporal cortex in schizophrenia: high Bax/Bcl-2 ratio without caspase-3 activation. Am J Psychiatry 161:109–115

    Article  PubMed  Google Scholar 

  • Jarskog LF, Gilmore JH, Glantz LA, Gable KL, German TT, Tong RI, Lieberman JA (2007) Caspase-3 activation in rat frontal cortex following treatment with typical and atypical antipsychotics. Neuropsychopharmacology 32:95–102

    Article  PubMed  CAS  Google Scholar 

  • Kikumori T, Kambe F, Nagaya T, Funahashi H, Seo H (2001) Thyrotrophin modifies activation of nuclear factor kappaB by tumor necrosis factor-alpha in rat thyroid cell line. Biochem J 354:573–579

    Article  PubMed  CAS  Google Scholar 

  • Lambert JD, Hong J, Kim DH, Mishin VM, Yang CS (2004) Piperine enhances the bioavailability of the tea polyphenol (−)-epigallocatechin-3-gallate in mice. J Nutr 134(8):1948–1952

    PubMed  CAS  Google Scholar 

  • Lerer B, Segman RH, Fangerau H, Daly AK, Basile VS, Cavallaro R, Aschauer HN, McCreadie RG, Ohlraun S, Ferrier N, Masellis M, Verga M, Scharfetter J, Rietschel M, Lovlie R, Levy UH, Meltzer HY, Kennedy JL, Steen VM, Macciardi F (2002) Pharmacogenetics of tardive dyskinesia: combined analysis of 780 patients supports association with dopamine D3 receptor gene Ser9Gly polymorphism. Neuropsychopharmacology 27(1):105–119

    Article  PubMed  CAS  Google Scholar 

  • Liñares D, Taconis M, Maña P, Correcha M, Fordham S, Staykova M, Willenborg DO (2006) Neuronal nitric oxide synthase plays a key role in CNS demyelination. J Neurosci 26(49):12672–12681

    Article  PubMed  Google Scholar 

  • Liou YJ, Lai IC, Lin MW, Bai YM, Lin CC, Liao DL, Chen JY, Lin CY, Wang YC (2006) Haplotype analysis of endothelial nitric oxide synthase (NOS3) genetic variants and tardive dyskinesia in patients with schizophrenia. Pharmacogenet Genomics 16(3):151–157

    PubMed  CAS  Google Scholar 

  • Lohr JB, Kuezenski R, Niculescu AB (2003) Oxidative mechanisms and tardive dyskinesia. CNS drugs 17(1):47–62

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH (1951) Protein measurements with the Folin-phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Madhavan L, Freed WJ, Anantharam V, Kanthasamy AG (2003) 5-Hydroxytryptamine 1A receptor activation protects against N-methyl-d-aspartate-induced apoptotic cell death in striatal and mesencephalic cultures. J Pharmacol Exp Ther 304(3):913–923

    Article  PubMed  CAS  Google Scholar 

  • Mahakunakorn P, Tohda M, Murakami Y, Matsumoto K, Watanabe H, Vajaragupta O (2003) Cytoprotective and cytotoxic effects of curcumin: dual action on H2O2-induced oxidative cell damage in NG108-15 cells. Biol Pharm Bull 26:725–728

    Article  PubMed  CAS  Google Scholar 

  • Müller DJ, Shinkai T, De Luca V, Kennedy JL (2004) Clinical implications of pharmacogenomics for tardive dyskinesia. Pharmacogenomics J 4(2):77–87

    Article  PubMed  Google Scholar 

  • Naidu PS, Singh A, Kulkarni SK (2003) Quercetin, a bioflavonoid attenuated haloperidol induced orofacial dyskinesia. Neuropharmacology 44:1100–1106

    Article  PubMed  CAS  Google Scholar 

  • Pan MH, Huang TM, Lin JK (1999) Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos 27:486–494

    PubMed  CAS  Google Scholar 

  • Polydoro M, Schroder N, Lima MN, Caldana F, Laranja DC, Bromberg E, Roesler R, Quevedo J, Moreira JC, Dal-Pizzol F (2004) Haloperidol- and clozapine-induced oxidative stress in the rat brain. Pharmacol Biochem Behav 78(4):751–756

    Article  PubMed  CAS  Google Scholar 

  • Post A, Holsboer F, Behl C (1998) Induction of NF-KB activity during haloperidol-induced oxidative toxicity in clonal hippocampal cells: suppression of NF-KB and neuroprotection by antioxidants. J Neurosci 15:8236–8246

    Google Scholar 

  • Post A, Rücker M, Ohl F, Uhr M, Holsboer F, Almeida OF, Michaelidis TM (2002) Mechanisms underlying the protective potential of alpha-tocopherol (vitamin E) against haloperidol-associated neurotoxicity. Neuropsychopharmacology 26(3):397–407

    Article  PubMed  CAS  Google Scholar 

  • Priyadarsini K, Maity D, Naik G (2003) Role of phenolic O–H and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin. Free Radic Biol Med 35:475–484

    Article  PubMed  CAS  Google Scholar 

  • Qin ZH, Chen RW, Wang Y, Nakai M, Chuang DM, Chase TN (1999) Nuclear factor KB nuclear translocation upregulates c-Myc and p53 expression during NMDA receptor apoptosis. J Neurosci 19:4023–4033

    PubMed  CAS  Google Scholar 

  • Quiles JL, Mesa MD, Ramirez-Tortosa CL, Aguilera CM, Battino M, Gil A, Ramirez-Tortosa MC (2002) Curcuma longa extract supplementation reduces oxidative stress and attenuates aortic fatty streak development in rabbits. Arterioscler Thromb Vasc Biol 22(7):1225–1231

    Article  PubMed  CAS  Google Scholar 

  • Rajeswari A (2006) Curcumin protects mouse brain from oxidative stress caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Eur Rev Med Pharmacol Sci 10(4):157–161

    PubMed  CAS  Google Scholar 

  • Ramos AJ, Rubio MD, Defagot C, Hischberg L, Villar MJ, Brusco A (2004) The 5HT1A receptor agonist, 8-OH-DPAT, protects neurons and reduces astroglial reaction after ischemic damage caused by cortical devascularization. Brain Res 1030(2):201–220

    Article  PubMed  CAS  Google Scholar 

  • Rauscher FM, Sanders RA, Watkins JB (2000) Effects of piperine on antioxidant pathways in tissues from normal and streptozotocin-induced diabetic rats. J Biochem Mol Toxicol 14(6):329–334

    Article  PubMed  CAS  Google Scholar 

  • Reinke A, Martins MR, Lima MS, Moreira JC, Dal-Pizzol F, Quevedo J (2004) Haloperidol and clozapine, but not olanzapine, induces oxidative stress in rat brain. Neurosci Lett 372(1–2):157–160

    Article  PubMed  CAS  Google Scholar 

  • Reynolds GP, Templeman LA, Zhang ZJ (2005) The role of 5-HT2C receptor polymorphisms in the pharmacogenetics of antipsychotic drug treatment. Prog Neuropsychopharmacol Biol Psychiatry 29(6):1021–1028

    Article  PubMed  CAS  Google Scholar 

  • Sagara Y (1998) Induction of reactive oxygen species in neurons by haloperidol. J Neurochem 71:1002–1012

    Article  PubMed  CAS  Google Scholar 

  • Saldaña M, Bonastre M, Aguilar E, Marin C (2006) Role of nigral NF-kappaB p50 and p65 subunit expression in haloperidol-induced neurotoxicity and stereotyped behavior in rats. Eur Neuropsychopharmacol 16(7):491–497

    Article  PubMed  Google Scholar 

  • Sandur SK, Ichikawa H, Pandey MK, Kunnumakkara AB, Sung B, Sethi G, Aggarwal BB (2007a) Role of pro-oxidants and antioxidants in the anti-inflammatory and apoptotic effects of curcumin (diferuloylmethane). Free Radic Biol Med 43(4):568–580

    Article  PubMed  CAS  Google Scholar 

  • Sandur SK, Pandey MK, Sung B, Ahn KS, Murakami A, Sethi G, Limtrakul P, Badmaev V, Aggarwal BB (2007b) Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis 28(8):1765–1773

    Article  PubMed  CAS  Google Scholar 

  • Schaaf MJ, Willetts L, Hayes BP, Maschera B, Stylianou E, Farrow SN (2006) The relationship between intranuclear mobility of the NF-KB subunit p65 and its DNA-binding affinity. J Biol Chem 281(31):22409–22420

    Article  PubMed  CAS  Google Scholar 

  • See RE, Lynch AM (1995) Chronic haloperidol potentiates stimulated glutamate release in caudate putamen, but not prefrontal cortex. Neuroreport 6(13):1795–1798

    Article  PubMed  CAS  Google Scholar 

  • See RE, Lynch AM, Aravagiri M, Nemeroff CB, Owens MJ (1995) Chronic haloperidol-induced changes in regional dopamine release and metabolism and neurotensin content in rats. Brain Res 704(2):202–209

    Article  PubMed  CAS  Google Scholar 

  • Selvendiran K, Singh JP, Krishnan KB, Sakthisekaran D (2003) Cytoprotective effect of piperine against benzo[a]pyrene induced lung cancer with reference to lipid peroxidation and antioxidant system in Swiss albino mice. Fitoterapia 74(1–2):109–115

    Article  PubMed  CAS  Google Scholar 

  • Sethi G, Ahn KS, Sandur SK, Lin X, Chaturvedi MM, Aggarwal BB (2006) Indirubin enhances tumor necrosis factor-induced apoptosis through modulation of nuclear factor-kappa B signaling pathway. J Biol Chem 281(33):23425–23435

    Article  PubMed  CAS  Google Scholar 

  • Sharma RA, Gescher AJ, Steward WP (2005) Curcumin: the story so far. Eur J Cancer (13):1955–1968

  • Sharma RA, Steward WP, Gescher AJ (2007a) Pharmacokinetics and pharmacodynamics of curcumin. Adv Exp Med Biol 595:453–470

    Article  PubMed  Google Scholar 

  • Sharma S, Chopra K, Kulkarni SK (2007b) Effect of insulin and its combination with resveratrol or curcumin in attenuation of diabetic neuropathic pain: participation of nitric oxide and TNF-alpha. Phytother Res 21(3):278–283

    Article  PubMed  CAS  Google Scholar 

  • Shishodia S, Sethi G, Aggarwal BB (2005) Curcumin: getting back to the roots. Ann N Y Acad Sci 1056:206–217

    Article  PubMed  CAS  Google Scholar 

  • Shishodia S, Chaturvedi MM, Aggarwal BB (2007) Role of curcumin in cancer therapy. Curr Probl Cancer 31(4):243–305

    Article  PubMed  Google Scholar 

  • Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS (1998) Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 64(4):353–356

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Khanna M, Sarin JPS (1981) High pressure liquid chromatographic determination of Curcumin in biological fluids. Indian Drugs 18:207–209

    CAS  Google Scholar 

  • Tamminga CA, Thaker GK, Moran M, Kakigi T, Gao XM (1994) Clozapine in tardive dyskinesia: observations from human and animal model studies. J Clin Psychiatry 55(Suppl B):102–106

    PubMed  Google Scholar 

  • Terland O, Almås B, Flatmark T, Andersson KK, Sørlie M (2006) One-electron oxidation of catecholamines generates free radicals with an in vitro toxicity correlating with their lifetime. Free Radic Biol Med 41(8):1266–1271

    Google Scholar 

  • Tsai G, Goff DC, Wang RW, Flood J, Baer L, Coyle JT (1998) Markers of glutamatergic neurotransmission and oxidative stress associated with tardive dyskinesia. Am J Psychiatry 155:1207–1213

    PubMed  CAS  Google Scholar 

  • Vijayakumar RS, Surya D, Nalini N (2004) Antioxidant efficacy of black pepper (Piper nigrum L.) and piperine in rats with high fat diet induced oxidative stress. Redox Rep 9(2):105–110

    Google Scholar 

  • Vilner BJ, Costa BR, Bowen WD (1995) Cytotoxic effects of sigma ligands: sigma receptor-mediated alterations in cellular morphology and viability. J Neurosci 15:134–137

    Google Scholar 

  • Wills ED (1966) Mechanism of lipid peroxide formation in animal tissues. Biochem Jour 99:667–676

    CAS  Google Scholar 

  • Xu Y, Ku BS, Yao HY, Lin YH, Ma X, Zhang YH, Li XJ (2005a) The effects of curcumin on depressive-like behaviors in mice. Eur J Pharmacol 518(1):40–46

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Ku BS, Yao HY, Lin YH, Ma X, Zhang YH, Li XJ (2005b) Antidepressant effects of curcumin in the forced swim test and olfactory bulbectomy models of depression in rats. Pharmacol Biochem Behav 82(1):200–206

    Article  PubMed  CAS  Google Scholar 

  • Yuan J, Yankner BA (2000) Apoptosis in the nervous system. Nature 407:802–809

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by the UGC grant under Centre with Potential for Excellence in Biomedical Sciences (CPEBS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra Bishnoi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bishnoi, M., Chopra, K., Rongzhu, L. et al. Protective Effect of Curcumin and its Combination with Piperine (Bioavailability Enhancer) Against Haloperidol-Associated Neurotoxicity: Cellular and Neurochemical Evidence. Neurotox Res 20, 215–225 (2011). https://doi.org/10.1007/s12640-010-9229-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-010-9229-4

Keywords

Navigation