Molecular Therapy
Volume 8, Issue 1, July 2003, Pages 143-150
Journal home page for Molecular Therapy

Article
Cell surface adherence and endocytosis of protein transduction domains

https://doi.org/10.1016/S1525-0016(03)00135-7Get rights and content
Under a Creative Commons license
open archive

Abstract

Protein transduction domains (PTD), such as the HIV TAT and the herpes simplex virus VP22 proteins, are reported to translocate across the membranes of mammalian cells. The mechanism of PTD membrane translocation has largely remained elusive, but recent studies suggest that the reported PTD translocation is due to a fixation artifact. We have constructed and expressed the PTDs VP22, TAT, polyarginine, and polylysine fused to the green fluorescent protein to visualize these proteins in both living and fixed cells. The investigated PTDs strongly adhered to the surface of living cells and were internalized by constitutive endocytosis. No cytosolic or nuclear import of the proteins was detected. In contrast, the PTD–GFP fusion proteins were redistributed to the cytosol and nucleus directly after fixation. Our findings suggest that the PTDs only mediate cell surface adherence, a property shared with many other positively charged macromolecules. The cell surface adherence results in endocytosis and accumulation of proteins in endosomes. We suggest that the biological effects observed for PTD fusion proteins are due to cell surface interactions and internalization of the proteins into cells by classical endocytosis.

Keywords

biological therapy
gene therapy
protein transport
membrane translocation
drug carrier
endocytosis

Cited by (0)