Cell Metabolism
Volume 13, Issue 3, 2 March 2011, Pages 340-350
Journal home page for Cell Metabolism

Resource
Measurement of H2O2 within Living Drosophila during Aging Using a Ratiometric Mass Spectrometry Probe Targeted to the Mitochondrial Matrix

https://doi.org/10.1016/j.cmet.2011.02.003Get rights and content
Under a Creative Commons license
open archive

Summary

Hydrogen peroxide (H2O2) is central to mitochondrial oxidative damage and redox signaling, but its roles are poorly understood due to the difficulty of measuring mitochondrial H2O2 in vivo. Here we report a ratiometric mass spectrometry probe approach to assess mitochondrial matrix H2O2 levels in vivo. The probe, MitoB, comprises a triphenylphosphonium (TPP) cation driving its accumulation within mitochondria, conjugated to an arylboronic acid that reacts with H2O2 to form a phenol, MitoP. Quantifying the MitoP/MitoB ratio by liquid chromatography-tandem mass spectrometry enabled measurement of a weighted average of mitochondrial H2O2 that predominantly reports on thoracic muscle mitochondria within living flies. There was an increase in mitochondrial H2O2 with age in flies, which was not coordinately altered by interventions that modulated life span. Our findings provide approaches to investigate mitochondrial ROS in vivo and suggest that while an increase in overall mitochondrial H2O2 correlates with aging, it may not be causative.

Highlights

► A mitochondria-targeted mass spectrometry probe measures mitochondrial H2O2 in vivo ► Overall mitochondrial H2O2 increases with age but can be independent of life span ► Increased physical activity leads to a decrease in mitochondrial H2O2 ► Hypotheses dependent on overall mitochondrial ROS can now be assessed in vivo

Cited by (0)