Skip to main content
Log in

On the Ability of High Density Lipoproteins to Remove Phospholipid Peroxidation Products from Erythrocyte Membranes

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

To study the transfer of oxidized phospholipids from cell membranes to high-density lipoproteins (HDL), human Cu2+-oxidized erythrocyte membranes were incubated with HDL3 subfraction for 17 h at 37°C followed by isolation of the supernatant, precipitation from it of HDL3, and determination of lipid peroxide products (LPP) in them. The incubation increased the content of lipid hydroperoxides in HDL3 significantly (by 32 and 40% calculated per ml of sample or mg of protein) and of malondialdehyde (by 27 and 34%, respectively) compared to control (incubation of HDL3 alone). The content of conjugated dienes did not change significantly. Fluorescence analyses of isolated HDL3 particles showed that the content of fluorescent products (λex = 365 nm, λem = 430 nm) in them was 2.5 times higher than in control, and the number of binding sites for the 1-anilinonaphthalene-8-sulfonic acid probe decreased by 22%. This also confirms accumulation of LPP in the lipoprotein subfraction. It seems likely that an increase in LPP (at least hydroperoxides) in HDL3 after their incubation with oxidized membranes occurs via transport of phospholipids containing LPP from erythrocyte membranes to lipoproteins. The data on the ability of HDL3 to accept LPP from erythrocyte membranes in vitro suggest that HDL3 may have a protective action on cell membranes undergoing oxidation in vivo as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Klimov, A. N., Kozhemyakin, L. A., Pleskov, V. M., and Andreeva, L. I. (1987) Byul. Eksp. Biol. Med. , 103, 550–552.

    Google Scholar 

  2. Mackness, M. I., and Durrington, P. N. (1995) Atherosclerosis, 115, 243–253.

    Google Scholar 

  3. Klimov, A. N., Nikiforova, A. A., Pleskov, V. M., Kuzmin, A. A., Kalashnikova, N. M., and Antipova T. O. (1989) Biokhimiya, 54, 118–123.

    Google Scholar 

  4. Vohl, M.-C., Neville, T. A.-M., Kumarathasan, R., Braschi, S., and Sparks, D. L. (1999) Biochemistry, 38, 5976–5981.

    Google Scholar 

  5. Klimov, A. N., Gurevich, V. S., Nikiforova, A. A., Shatilina, L. V., Kuzmin, A. A., Plavinsky, S. L., and Teryukova, N. P. (1993) Atherosclerosis, 100, 13–18.

    Google Scholar 

  6. Nikiforova, A. A., Kuzmin, A. A., and Klimov, A. N. (1995) Phys. Chem. Biol. Med., 2, 127–133.

    Google Scholar 

  7. Klimov, A. N., Gurevich, V. S., Nikiforova, A. A., Denisenko, A. D., Kuznetsov, A. S., Shatilina, L. V., and Plavinsky, S. L. (1994) Atherosclerosis, 109, 37–38.

    Google Scholar 

  8. Hayek, T., Oiknine, J., Danker, G., Brook, J. G., and Aviram, M. (1995) Eur. J. Clin. Chem. Clin. Biochem ., 33, 721–725.

    Google Scholar 

  9. Itabe, H., Hosoya, R., Karasawa, K., Jimi, S., Saku, K., Takebayashi, S., Imanaka, T., and Takano, T. (1999) J. Biochem. (Tokyo), 126, 153–161.

    Google Scholar 

  10. Klimov, A. N., Nikiforova, A. A., Kuzmin, A. A., Kuznetsov, A. S., and Mackness, M. I. (1998) in Advances in Lipoprotein and Atherosclerosis Research, Diagnostics and Treatment, Gustav Fischer Verlag, Jena, pp. 78–82.

    Google Scholar 

  11. Jonas, A., Hesterberg, L. K., and Drengler, S. M. (1978) Biochim. Biophys. Acta, 528, 47–57.

    Google Scholar 

  12. Miller, N. E., La Ville, A. L., and Crook, D. (1985) Nature, 314, 109–111.

    Google Scholar 

  13. Akkus, I., Saglam, N. J., Caglaya, O., Viral, H., Kalak, S., and Saglam, M. (1996) Clin. Chim. Acta, 244, 173–180.

    Google Scholar 

  14. Santos-Silva, A., Castro, E. M. B., Teixeira, N. A., Guerra, F. C., and Quintanilha, A. (1995) Atherosclerosis, 116, 199–209.

    Google Scholar 

  15. Dodge, J. T., Mitchell, C., and Hanahan, D. J. (1963) Arch. Biochem. Biophys ., 100, 119–130.

    Google Scholar 

  16. Havel, R. J., Eder, H. A., and Bragdon, J. H. (1955) J. Clin. Invest ., 34, 1345–1353.

    Google Scholar 

  17. Burstein, M., Scholnick, H. R., and Morein, R. (1970) J. Lipid Res ., 11, 583–595.

    Google Scholar 

  18. Magracheva, E. Ya. (1973) Vopr. Med. Khim., 19, 652–655.

    Google Scholar 

  19. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randall, R. J. (1951) J. Biol. Chem ., 191, 265–275.

    Google Scholar 

  20. Folch, J., Lees, M., and Sloane-Stanley, G. H. (1957) J. Biol. Chem., 226, 497–509.

    Google Scholar 

  21. Buege, J. A., and Aust, S. O. (1978) Meth. Enzymol ., 52, 302–310.

    Google Scholar 

  22. Darrow, R. A., and Organisciak, D. T. (1994) Lipids, 29, 591–594.

    Google Scholar 

  23. Smith, J. B., Ingerman, C. M., and Silver, M. I. (1976) J. Lab. Clin. Med ., 88, 169–179.

    Google Scholar 

  24. Shimasaki, H., Sato, J., and Hara, I. (1975) J. Jap. Chem. Soc ., 24, 464–468.

    Google Scholar 

  25. Formazjuk, V. E., Osis, Ju. G., Deev, A. I., Lankin, V. Z., Vihert, A. M., and Vladimirov, Ju. A. (1982) Dokl. AN SSSR, 263, 497–500.

    Google Scholar 

  26. Damen, J., Regts, J., and Scherphof, G. (1981) Biochim. Biophys. Acta, 665, 538–545.

    Google Scholar 

  27. Reed, C. F. (1968) J. Clin. Invest., 47, 749–760.

    Google Scholar 

  28. Bowry, V. W., Stanley, K., and Stocker, R. (1992) Proc. Natl. Acad. Sci. USA, 89, 10316–10320.

    Google Scholar 

  29. Maziere, J.-C., Myara, I., Salmon, S., Auclair, M., Haigle, J., Santus, R., and Maziére, C. (1993) Atherosclerosis, 104, 213–219.

    Google Scholar 

  30. Dobretsov, T. E. (1989) Fluorescence Probes in Investigation of Cells, Membranes, and Lipoproteins [in Russian], Nauka, Moscow.

    Google Scholar 

  31. Vladimirov, G. E., Pelishenko, I. A., and Urinson, A. P. (1948) Biokhimiya, 13, 449–452.

    Google Scholar 

  32. Nagata, Y., Yamamoto, Y., and Niki, E. (1996) Arch. Biochem. Biophys., 329, 24–36.

    Google Scholar 

  33. Subramanian, V. S., Goyal, J., Miwa, M., Sugatami, J., Akiyama, M., Liu, M., and Subbaiah, P. V. (1999) Biochim. Biophys. Acta, 1439, 95–109.

    Google Scholar 

  34. Christison, J., Karjalainen, A., Brauman, J., Bygrave, F., and Stocker, R. (1996) Biochem. J ., 314, 739–742.

    Google Scholar 

  35. Sattler, W., and Stocker, R. (1993) Biochem. J., 294, 771–778.

    Google Scholar 

  36. Acton, S., Rigotti, A., Landschulz, K. T., Xu, S., Hobbs, H. H., and Krieger, M. (1996) Science, 271, 518–520.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klimov, A.N., Kozhevnikova, K.A., Kuzmin, A.A. et al. On the Ability of High Density Lipoproteins to Remove Phospholipid Peroxidation Products from Erythrocyte Membranes. Biochemistry (Moscow) 66, 300–304 (2001). https://doi.org/10.1023/A:1010203930470

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010203930470

Navigation