Skip to main content
Log in

Brain Membrane Phospholipid Alterations in Alzheimer's Disease

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Studies have demonstrated alterations in brain membrane phospholipid metabolite levels in Alzheimer's disease (AD). The changes in phospholipid metabolite levels correlate with neuropathological hallmarks of the disease and measures of cognitive decline. This 31P nuclear magnetic resonance (NMR) study of Folch extracts of autopsy material reveals significant reductions in AD brain levels of phosphatidylethanolamine (PtdEtn) and phosphatidylinositol (PtdIns), and elevations in sphingomyelin (SPH) and the plasmalogen derivative of PtdEtn. In the superior temporal gyrus, there were additional reductions in the levels of diphosphatidylglycerol (DPG) and phosphatidic acid (PtdA). The findings are present in 3/3 as well as 3/4 and 4/4 apolipoprotein E (apoE) genotypes. The AD findings do not appear to reflect non-specific neurodegeneration or the presence of gliosis. The present findings could possibly contribute to an abnormal membrane repair in AD brains which ultimately results in synaptic loss and the aggregation of Aβ peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Pettegrew, J. W., Minshew, N. J., Cohen, M. M., Kopp, S. J., and Glonek, T. 1984. P-31 NMR changes in Alzheimer's and Huntington's disease brain (abstract). Neurology 34(Suppl 1):281.

    Google Scholar 

  2. Pettegrew, J. W., Withers, G., Panchalingam, K., and Post, J. F. 1987. 31P nuclear magnetic resonance (NMR) spectroscopy of brain in aging and Alzheimer's disease. J. Neural Transm. Suppl. 24:261–268.

    Google Scholar 

  3. Pettegrew, J. W., Moossy, J., Withers, G., McKeag, D., and Panchalingam, K. 1988. 31P Nuclear Magnetic Resonance study of the brain in Alzheimer's disease. J. Neuropathol. Exp. Neurol. 47:235–248.

    Google Scholar 

  4. Brown, G. G., Levine, S. R., Gorell, J. M., Pettegrew, J. W., Gdowski, J. W., Bueri, J. A., Helpern, J. A., and Welch, K. M. 1989. In vivo 31P NMR profiles of Alzheimer's disease and multiple subcortical infarct dementia. Neurology 39:1423–1427.

    Google Scholar 

  5. Nitsch, R. M., Blusztajn, J. K., Pittas, A. G., Slack, B. E., Growdon, J. H., and Wurtman, R. J. 1992. Evidence for a membrane defect in Alzheimer disease brain. Proc. Natl. Acad. Sci. USA 89:1671–1675.

    Google Scholar 

  6. Smith, C. D., Gallenstein, L. G., Layton, W. J., Kryscio, R. J., and Markesbery, W. R. 1993. 31P magnetic resonance spectroscopy in Alzheimer's and Pick's disease. Neurobiol. Aging 14:85–92.

    Google Scholar 

  7. Cuenod, C.-A., Kaplan, D. B., Michot, J.-L., Jehenson, P., Leroy-Willig, A., Forette, F., Syrota, A., and Boller, F. 1995. Phospholipid abnormalities in early Alzheimer's disease. Arch. Neurol. 52:89–94.

    Google Scholar 

  8. Pettegrew, J. W., Panchalingam, K., Klunk, W. E., McClure, R. J., and Muenz, L. R. 1994. Alterations of cerebral metabolism in probable Alzheimer's disease: A preliminary study. Neurobiol. Aging 15:117–132.

    Google Scholar 

  9. Klunk, W. E., Panchalingam, K., McClure, R. J., and Pettegrew, J. W. 1996. Quantitative 1H and 31P MRS of PCA extracts of postmortem Alzheimer's disease brain. Neurobiol. Aging 17:349–357.

    Google Scholar 

  10. Pettegrew, J. W., Panchalingam, K., Withers, G., McKeag, D., and Strychor, S. 1990. Changes in brain energy and phospholipid metabolism during development and aging in the Fischer 344 rat. J. Neuropathol. Exp. Neurol. 49:237–249.

    Google Scholar 

  11. Vance, D. E. 1991. Phospholipid metabolism and cell signalling in eucaryotes. Pages 205–240, in Vance, D. E., and Vance, J. (eds.), Biochemistry of lipids, lipoproteins and membranes, Volume 20, Elsevier, New York.

    Google Scholar 

  12. Pettegrew, J. W., McClure, R. J., Keshavan, M. S., Minshew, N. J., Panchalingam, K., and Klunk, W. E. 1997. 31P magnetic resonance spectroscopy studies of developing brain. Pages 71–92, in Keshavan, M. S., and Murray, R. M. (eds.), Neurodevelopement & Adult Psychopathology, Cambridge University Press, Cambridge.

    Google Scholar 

  13. Geddes, J. W., Panchalingam, K., Keller, J. N., and Pettegrew, J. W. 1997. Elevated phosphocholine and phosphatidyl choline following rat entorhinal cortex lesions. Neurobiol. Aging 18:305–308.

    Google Scholar 

  14. Kanfer, J. N., Pettegrew, J. W., Moossy, J., and McCartney, D. G. 1993. Alterations of selected enzymes of phospholipid metabolism in Alzheimer's disease brain tissue as compared to non-Alzheimer's disease controls. Neurochem. Res. 18:331–334.

    Google Scholar 

  15. Pettegrew, J. W., Panchalingam, K., Moossy, J., Martinez, J., Rao, G., and Boller, F. 1988. Correlation of phosphorus-31 magnetic resonance spectroscopy and morphologic findings in Alzheimer's disease. Arch. Neurol. 45:1093–1096.

    Google Scholar 

  16. Klunk, W. E., Xu, C. J., McClure, R. J., Panchalingam, K., Stanley, J. A., and Pettegrew, J. W. 1997. Aggregation of β-amyloid peptide is promoted by membrane phospholipid metabolites elevated in Alzheimer's disease brain. J. Neurochem. 69:266–272.

    Google Scholar 

  17. Pettegrew, J. W., Klunk, W. E., Kanal, E., Panchalingam, K., and McClure, R. J. 1995. Changes in brain membrane phospholipid and high-energy phosphate metabolism precede dementia. Neurobiol. Aging 16:973–975.

    Google Scholar 

  18. Pettegrew, J. W., Klunk, W. E., Panchalingam, K., McClure, R. J., and Stanley, J. A. 1997. Magnetic resonance spectroscopic changes in Alzheimer's disease. Ann. NY Acad. Sci. 826:282–306.

    Google Scholar 

  19. Mason, R. P., Shoemaker, W. J., Shajenko, L., Chambers, T. E., and Herbette, G. 1992. Structural changes in Alzheimer's disease brain membrane mediated by alteration in cholesterol. Neurobiol. Aging 13:413–419.

    Google Scholar 

  20. Mahley, R. W. 1988. Apolipoprotein E: Cholesterol transport protein with expanding role in cell biology. Science 240:622–630.

    Google Scholar 

  21. Patrick, G. N., Zukerberg, L., Nikolic, M., de la Monte, S., Dikkes, P., and Tsai, L.-H. 1999. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402:615–622.

    Google Scholar 

  22. Aronson, M. K., Ooi, W. L., Morgenstern, H., Hafner, M. S., Masur, D., and Crystal H. 1990. Women, myocardial infraction, and dementia in the very old. Neurology 40:1102–1106.

    Google Scholar 

  23. Sparks, D. L., Hunsaker, J. C., III, Scheff, S. W., Kryscio, R. J., Henson, J. L., and Markesbery, W. R. 1990. Cortical senile plaques in coronary artery diseases, aging and Alzheimer's disease. Neurobiol. Aging 11:601–607.

    Google Scholar 

  24. Khachaturian, Z. S. 1985. Diagnosis of Alzheimer's disease. Arch. Neurol. 42:1097–1105.

    Google Scholar 

  25. Moossy, J., Zubenko, G., Martinez, J., Rao, G. R., Kopp, U., and Hanin, I. 1988. Bilateral symmetry of morphologic lesions in Alzheimer's disease. Arch. Neurol. 45:251–254.

    Google Scholar 

  26. Meneses, P. and Glonek, T. 1988. High resolution 31P NMR of extracted phospholipids. J. Lipid Res. 29:679–690.

    Google Scholar 

  27. Pettegrew, J. W., Panchalingam, K., Levine, J., McClure, R. J., Gershon, S., and Yao, J. K. 2001. Chronic myo-inositol increases rat brain phosphatidylethanolamine plasmalogen. Biol. Psychiatry 49:444–453.

    Google Scholar 

  28. Steel, R. G. D. and Torrie, J. H. 1980. Principles and Procedures of Statistics a Biometrical Approach, McGraw-Hill, New York.

    Google Scholar 

  29. Klunk, W. E., Xu, C. J., Panchalingam, K., McClure, R. J., and Pettegrew, J. W. 1994. Analysis of magnetic resonance spectra by mole percent: Comparison to absolute units. Neurobiol. Aging 15:133–140.

    Google Scholar 

  30. Simons, K. and Ikonen, E. 1997. Functional rafts in cell membranes. Nature 387:569–572.

    Google Scholar 

  31. Harder, T. and Simons, K. 1997. Caveolae, DIGs, and the dynamics of sphingolipid-cholesterol microdomains. Curr. Opinion Cell Biol. 9:534–542.

    Google Scholar 

  32. Pettegrew, J. W., Klunk, W. E., Panchalingam, K., McClure, R. J., and Stanley, J. A. 2000. Molecular insights into neurodevelopmental and neurodegenerative diseases. Brain Res. Bull. 53:455–469.

    Google Scholar 

  33. Maulik, P. R. and Shipley, G. G. 1996. Interactions of N-stearoyl sphingomyelin with cholesterol and dipalmitoylphosphatidylcholine in bilayer membranes. Biophys. J. 70:2256–2265.

    Google Scholar 

  34. Scott, H. L., Jakobsson, E., Mashl, J., and Chiu, S.-W. 2001. Combined molecular dynamics and Monte Carlo simulation of sphingomyelin lipid bylayers (abstract). Biophys. J. 80(Suppl):525a.

    Google Scholar 

  35. Ballou, L. R., Laulederkind, S. J., Rosloniec, E. F., and Raghow, R. 1996. Ceramide signalling and the immune response. Biochim. Biophys. Acta 1301:273–287.

    Google Scholar 

  36. Pyne, S., Tolan, D. G., Conway, A. M., and Pyne, N. 1997. Sphingolipids as differential regulators of cellular signalling processes. Biochem. Soc. Trans. 25:549–556.

    Google Scholar 

  37. Haimovitz-Friedman, A., Kolesnick, R. N., and Fuks, Z. 1997. Ceramide signaling in apoptosis. Br. Med. Bull. 53:539–553.

    Google Scholar 

  38. Perry, D. K. and Hannun, Y. A. 1998. The role of ceramide in cell signaling. Biochim. Biophys. Acta 1436:233–243.

    Google Scholar 

  39. Merrill, A. H. J., Morgan, E. T., Nikolova-Karakashian, M., and Stewart, J. 1999. Sphingomyelin hydrolysis and regulation of the expression of the gene for cytochrome P450. Biochem. Soc. Trans. 27:383–387.

    Google Scholar 

  40. Levade, T. and Jaffrezou, J. P. 1999. Signalling sphingomyelinases: which, where, how and why? Biochim. Biophys. Acta 1438:1–17.

    Google Scholar 

  41. Hannun, Y. A. and Luberto, C. 2000. Ceramide in the eukaryotic stress response. Trends Cell Biol. 10:73–80.

    Google Scholar 

  42. Gross, R. W. 1984. High plasmalogen and arachidonic acid content of canine myocardial sarcolemma: a fast atom bombardment mass spectroscopic and gas chromatography-mass spectroscopic characterization. Biochemistry 23:158–165.

    Google Scholar 

  43. Diagne, A., Fauvel, J., Record, M., Chap, H., and Douste-Blazy, L. 1984. Studies on ether phospholipids II. Comparative composition of various tissues from human, rat and guinea pig. Biochim. Biophys. Acta 793:221–231.

    Google Scholar 

  44. Lohner, K., Balgavy, P., Hermetter, A., Paltauf, F., and Laggner, P. 1991. Stabilization of non-bilayer structures by the etherlipid ethanolamine plasmalogen. Biochim. Biophys. Acta 1061:132–140.

    Google Scholar 

  45. Ginsberg, L., Xuereb, J. H., and Gershfeld, N. L. 1998. Membrane instability, plasmalogen content, and Alzheimer's disease. J. Neurochem. 70:2533–2538.

    Google Scholar 

  46. Kaufman, A. E., Goldfine, H., Narayan, O., and Gruner, S. M. 1990. Physical studies on the membranes and lipids of plasmalogen-deficient Megasphaera elsdenii. Chem. Phys. Lipids 55:41–48.

    Google Scholar 

  47. Lohner, K. 1996. Is the high propensity of ethanolamine plasmalogens to form non-lamellar lipid structures manifested in the properties of biomembranes? Chem. Phys. Lipids 81: 167–184.

    Google Scholar 

  48. Glaser, P. E. and Gross, R. W. 1994. Plasmenylethanolamine facilitates rapid membrane fusion: a stopped-flow kinetic investigation correlating the propensity of a major plasma membrane constituent to adopt an HII phase with its ability to promote membrane fusion. Biochemistry 33:5805–5812.

    Google Scholar 

  49. Farooqui, A. A., Rapoport, S. I., and Horrocks, L. A. 1997. Membrane phospholipid alterations in Alzheimer's disease: deficiency of ethanolamine plasmalogens. Neurochem. Res. 22: 523–527.

    Google Scholar 

  50. Schu, P. V., Takegawa, K., Fry, M. J., Stack, J. H., Waterfield, M. D., and Emr, S. D. 1993. Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260:88–91.

    Google Scholar 

  51. Qiao, L., Nan, F., Kunkel, M., Gallegos, A., Powis, G., and Kozikowski, A. P. 1998. 3-Deoxy-D-myo-inositol 1-phosphate, 1-phosphonate, and ether lipid analogues as inhibitors of phosphatidylinositol-3-kinase signaling and cancer cell growth. J. Med. Chem. 41:3303–3306.

    Google Scholar 

  52. Merrill, A. H. J. and Schroeder, J. J. 1993. Lipid modulation of cell function. Annu. Rev. Nutr. 13:539–559.

    Google Scholar 

  53. Turini, M. E. and Holub, B. J. 1994. The cleavage of plasmenylethanolamine by phospholipase A2 appears to be mediated by the low affinity binding site of the TxA2/PGH2 receptor in U46619-stimulated human platelets. Biochim. Biophys. Acta 1213:21–26.

    Google Scholar 

  54. Gross, R. W. 1985. Identification of plasmalogen as the major phospholipid constituent of cardiac sarcoplasmic reticulum. Biochemistry 24:1662–1668.

    Google Scholar 

  55. Paltauf, F. 1994. Ether lipids in biomembranes. Chem. Phys. Lipids 74:101–139.

    Google Scholar 

  56. Yavin, E. and Gatt, S. 1972. Oxygen-dependent cleavage of the vinyl-ether linkage of plasmologens. 1. Cleavage by rat-brain supernatant. Eur. J. Biochem. 25:431–436.

    Google Scholar 

  57. Reiss, D., Beyer, K., and Engelmann, B. 1997. Delayed oxidative degradation of polyunsaturated diacyl phospholipids in the presence of plasmalogen phospholipids in vitro. Biochem. J. 323:807–814.

    Google Scholar 

  58. Engelmann, B., Brautigam, C., and Thiery, J. 1994. Plasmalogen phospholipids as potential protectors against lipid peroxidation of low density lipoproteins. Biochem. Biophys. Res. Commun. 204:1235–1242.

    Google Scholar 

  59. Farooqui, A. A., Yang, H. C., and Horrocks, L. A. 1995. Plasmalogens, phospholipases A2 and signal transduction. Brain Res. Brain Res. Rev. 21:152–161.

    Google Scholar 

  60. Holub, B. J. 1986. Metabolism and function of myo-inositol and inositol phospholipids. Annu. Rev. Nutr. 6:563–597.

    Google Scholar 

  61. Klunk, W. E., Panchalingam, K., McClure, R. J., Stanley, J. A., and Pettegrew, J. W. 1998. Metabolic alterations in postmortem Alzheimer's disease brain are exaggerated by Apo-E4. Neurobiol. Aging 19:511–515.

    Google Scholar 

  62. Schlame, M., Rua, D., and Greenberg, M. L. 2000. The biosynthesis and functional role of cardiolipin. Prog. Lipid Res. 39:257–288.

    Google Scholar 

  63. Lehninger, A. L., Nelson, D. L., and Cox, M. M. 1993. Principles of Biochemistry, Worth Publishers, New York.

    Google Scholar 

  64. Jope, R. S., Song, L., and Powers, R. E. 1997. Cholinergic activation of phosphoinositide signaling is impaired in Alzheimer's disease brain. Neurobiol. Aging 18:111–120.

    Google Scholar 

  65. Fowler, C. J. 1997. The role of the phosphoinositide signalling system in the pathgenesis of sporadic Alzheimer's disease: a hypothesis. Brain Res. Rev. 25:373–380.

    Google Scholar 

  66. McAuley, K. E., Fyfe, P. K., Ridge, J. P., Isaacs, N. W., Cogdell, R. J., and Jones, M. R. 1999. Structural details of an interaction between cardiolipin and an integral membrane protein. Proc. Natl. Acad. Sci. USA 96:14706–14711.

    Google Scholar 

  67. Robinson, N. C. 1993. Functional binding of cardiolipin to cytochrome c oxidase. J. Bioenerg. Biomembr. 25:153–163.

    Google Scholar 

  68. Kish, S., Bergeron, C., Rajput, A., Dozic, S., Mastrogracosno, F., Chong, L. J., Wilson, J. M., DiStefano, L. M., and Nobregia, J. N. 1992. Brain cytochrome oxidase in Alzheimer's disease. J. Neurochem. 59:776–779.

    Google Scholar 

  69. Sims, N. R., Finegan, J. M., Blass, J. P., Bowen, D. M., and Neary, D. 1987. Mitochondrial function in brain tissue in primary degenerative dementia. Brain Res. 436:30–38.

    Google Scholar 

  70. Chauhan, A., Ray. I., and Chauhan, V. P. S. 2000. Interaction of amyloid beta-protein with anionic phospholipids: Possible involvement of Lys28 and C-terminus aliphatic amino acids. Neurochem. Res. 25:423–429.

    Google Scholar 

  71. Vance, J. E., Campenot, R. B., and Vance, D. E. 2000. The synthesis and transport of lipids of axonal growth and nerve regeneration. Biochim. Biophys. Acta 1486:84–96.

    Google Scholar 

  72. Hirokawa, N. 1998. Kinesin and dynein superfamily proteins and teh mechanism of organelle transport. Science 279:519–526.

    Google Scholar 

  73. Ginsberg, L., Rafique, S., Xuereb, J. H., Rapoport, S. I., and Gershfeld, N. L. 1995. Disease and anatomic specificity of ethanolamine plasmalogen deficiency in Alzheimer's disease brain. Brain Res. 698:223–226.

    Google Scholar 

  74. Prasad, M. R., Lovell, M. A., Yatin, M., Dhillon, H., and Markesbery, W. R. 1998. Regional membrane phospholipid alterations in Alzheimer's disease. Neurochem. Res. 23:81–88.

    Google Scholar 

  75. Wells, K., Farooqui, A. A., Liss, L., and Horrocks, L. A. 1995. Neural membrane phospholipids in Alzheimer disease. Neurochem. Res. 20:1329–1333.

    Google Scholar 

  76. Guan, Z., Wang, Y., Cairns, N. J., Lantos, P. L., Dallner, G., and Sindelar, P. J. 1999. Decrease and structural modifications of phosphatidylethanolamine plasmalogen in the brain with Alzheimer disease. J. Neuropathol. Exp. Neurol. 58:740–747.

    Google Scholar 

  77. McIlwain, H. and Bachelard, H. S. 1985. Biochemistry and the Central Nervous System, Churchill Livingstone, Edinburgh.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pettegrew, J.W., Panchalingam, K., Hamilton, R.L. et al. Brain Membrane Phospholipid Alterations in Alzheimer's Disease. Neurochem Res 26, 771–782 (2001). https://doi.org/10.1023/A:1011603916962

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011603916962

Navigation