Skip to main content
Log in

Contractile proteins in pericytes at the blood-brain and blood-retinal barriers

  • Published:
Journal of Neurocytology

Abstract

Evidence from a variety of sources suggests that pericytes have contractile properties and may therefore function in the regulation of capillary blood flow. However, it has been suggested that contractility is not a ubiquitous function of pericytes, and that pericytes surrounding true capillaries apparently lack the machinery for contraction. The present study used a variety of techniques to investigate the expression of contractile proteins in the pericytes of the CNS. The results of immunocytochemistry on cryosections of brain and retina, retinal whole-mounts and immunoblotting of isolated brain capillaries indicate strong expression of the smooth muscle isoform of actin (α-SM actin) in a significant number of mid-capillary pericytes. Immunogold labelling at the ultrastructural level showed that α-SM actin expression in capillaries was exclusive to pericytes, and endothelial cells were negative. Compared to α-SM actin, non-muscle myosin was present in lower concentrations. By contrast, smooth muscle myosin isoforms, were absent. Pericytes were strongly positive for the intermediate filament protein vimentin, but lacked desmin which was consistently found in vascular smooth muscle cells. These results add support for a contractile role in pericytes of the CNS microvasculature, similar to that of vascular smooth muscle cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott, N. J., Hughes, C. C. W., Revest, P. A. & Greenwood, J. (1992) Development and characterisation of a rat brain capillary endothelial culture: Towards an in vitro blood-brain barrier. Journal of Cell Science 103, 23–37.

    PubMed  Google Scholar 

  • Allt, G. & Lawrenson, J. G. (2001) Pericytes: Cell biology and pathology. Cells Tissues and Organs, 169, 1–11.

    Google Scholar 

  • Boado, R. J. & Pardridge, W. M. (1994) Differential expression of alpha-actin mRNA and immunoreactive protein in brain microvascular pericytes and smooth muscle cells. Journal of Neuroscience Research 39, 430–435.

    PubMed  Google Scholar 

  • Bradford, M. M. (1976) Arapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248–254.

    Article  PubMed  Google Scholar 

  • Chan, L. S., Li, W., Khatami, M. & Rockey, J. H. (1986) Actin in cultured bovine retinal capillary pericytes: Morphological and functional correlation. Experimental Eye Research 43, 41–54.

    PubMed  Google Scholar 

  • Das, A., Frank, R. N., Weber, M. L., Kennedy, A., Reidy, C. A. & Mancini, M. A. (1988) ATP causes retinal pericytes to contract in vitro. Experimental Eye Research 46, 349–362.

    PubMed  Google Scholar 

  • Dehouck, M.-P., Vigne, P., Torpier, G., Breittmayer, J. P., Cecchelli, R. & Frelin, C. (1997) Endothelin-1 as a mediator of endothelial cell-pericyte interactions in bovine brain capillaries. Journal of Cerebral Blood Flow and Metabolism 17, 464–469.

    PubMed  Google Scholar 

  • DeNofrio, D., Hoock, T. C. & Herman, I. M. (1989) Fun ctional sorting of actin isoforms in microvascular pericytes. Journal of Cell Biology 109, 191–202.

    PubMed  Google Scholar 

  • DÍaz-Flores, L., Gutierrez, R., Varela, H., Rancel, N. & Valladares, F. (1991) Microvascular pericytes: A review of their morphological and functional characteristics. Histology and Histopathology 6, 269–286.

    PubMed  Google Scholar 

  • Ehler, E., Karlhuber, G., Bauer, H.-C. & Draeger, A. (1995) Heterogeneity of smooth muscle-associated proteins in mammalian brain microvasculature. Cell and Tissue Research 279, 393–403.

    PubMed  Google Scholar 

  • Gitlin, J. D. & D'Amore, P. A. (1983) Culture of retinal capillary cells using selective growth media. Microvascular Research 26, 74–80.

    PubMed  Google Scholar 

  • Herman, I. M. (1993) Microvascular pericytes in development and disease. In The Blood-Brain Barrier. Cellular and Molecular Biology (edited by Pardridge, W. M.) pp. 127–135. New York: Raven Press.

    Google Scholar 

  • Herman, I. M. & D'Amore, P. A. (1985) Microvascular pericytes contain muscle and nonmuscle actins. Journal of Cell Biology 101, 43–52.

    PubMed  Google Scholar 

  • Herman, I. M. & Jacobson, S. (1988) In situ analysis of microvascular pericytes in hypertensive rat brains. Tissue & Cell 20, 1–12.

    Google Scholar 

  • Herman, I. M., Newcomb, P. M., Coughlin, J. E. & Jacobson, S. (1987) Characterization of microvascular cell cultures from normotensive and hypertensive rat brains: Pericyte-endothelial cell interactions in vitro. Tissue & Cell 19, 197–206.

    Google Scholar 

  • Hirschi, K. K. & D'Amore, P. A. (1996) Pericytes in the microvasculature. Cardiovascular Research 32, 687–698.

    PubMed  Google Scholar 

  • Joyce, N. C., Decamilli, P. & Boyles, J. (1984) Pericytes, like vascular smooth muscle cells, are immunocytochemically positive for cyclic GMPdependent protein kinase. Microvascular Research 28, 206–219.

    PubMed  Google Scholar 

  • Joyce, N. C., Haire, M. F. & Palade, G. E. (1985a) Contractile proteins in pericytes. I. Immunoperoxidase localization of tropomyosin. Journal of Cell Biology 100, 1379–1386.

    PubMed  Google Scholar 

  • Joyce, N. C., Haire, M. F. & Palade, G. E. (1985b) Contractile proteins in pericytes. II. Immunocytochemical evidence for the presence of two isomyosins in graded concentrations. Journal of Cell Biology 100, 1387–1395.

    PubMed  Google Scholar 

  • Kelley, C., D'Amore, P., Hechtman, H. B. & Shepro, D. (1987) Microvascular pericyte contractility in vitro: A comparison with other cells of the vascular wall. Journal of Cell Biology 104, 483–490.

    PubMed  Google Scholar 

  • Kelley, C., D'Amore, P., Hechtman, H. B. & Shepro, D. (1988) Vasoactive hormones and cAMP affect pericyte contraction and stress fibers in vitro. Journal of Muscle Research and Cell Motility 9, 184–194.

    PubMed  Google Scholar 

  • Laties, A. M., Rapoport, S. I. & McGlinn, A. (1979) Hypertensive breakdown of cerebral but not of retinal blood vessels in rhesus monkey. Archives of Ophthalmology 97, 1511–1514.

    PubMed  Google Scholar 

  • Lee, T.-S., Hu, K.-Q., Chao, T. & King, G. L. (1989) Characterization of endothelin receptors and effects of endothelin on diacylglycerol and protein kinase C in retinal capillary pericytes. Diabetes 38, 1643–1646.

    PubMed  Google Scholar 

  • Masaki, T. (1995) Possible role of endothelin in endothelial regulation of vascular tone. Annual Review of Pharmacology and Toxicology 35, 235–255.

    PubMed  Google Scholar 

  • Nehls, V. & Drenckhahn, D. (1991) Heterogeneity of microvascular pericytes for smooth muscle type alpha-actin. Journal of Cell Biology 113, 147–154.

    PubMed  Google Scholar 

  • Nehls, V. & Drenckhahn, D. (1993) The versatility of microvascular pericytes: From mesenchyme to smooth muscle? Histochemistry 99, 1–12.

    PubMed  Google Scholar 

  • Orlidge, A. & D'Amore, P. A. (1987) Inhibition of capillary endothelial cell growth by pericytes and smooth muscle cells. Journal of Cell Biology 105, 1455–1462.

    PubMed  Google Scholar 

  • Pannarale, L., Onori, P., Ripani, M. & Gaudio, E. (1996) Precapillary patterns and perivascular cells in the retinal microvasculature. A scanning electron microscopic study. Journal of Anatomy 188, 693–703.

    PubMed  Google Scholar 

  • SchÖnfelder, U., Hofer, A., Paul, M. & Funk, R. H. W. (1998) In situ observation of living pericytes in rat retinal capillaries. Microvascular Research 56, 22–29.

    PubMed  Google Scholar 

  • Sims, D. E. (1986) The pericyte-a review. Tissue & Cell 18, 153–174.

    Google Scholar 

  • Sims, D. E. (1991) Recent advances in pericyte biology—implications for health and disease. Canadian Journal of Cardiology 7, 431–443.

    PubMed  Google Scholar 

  • Skalli, O., Pelte, M.-F., Peclet, M. C., Gabbiani, G., Gugliotta, P., Bussolati, G., Ravazzola, M. & Orci, L. (1989) ?-smooth muscle cell actin, a differentiation marker of smooth muscle cells, is present in microfilamentous bundle of pericytes. Journal of Histochemistry and Cytochemistry 37, 315–321.

    PubMed  Google Scholar 

  • Stewart, P. A. & Tuor, U. I. (1994) Blood-eye barriers in the rat: Correlation of ultrastructure with function. Journal of Comparative Neurology 340, 566–576.

    PubMed  Google Scholar 

  • Takahashi, K., Brooks, R. A., Kanse, S. M., Ghatei, M. A., Kohner, E. M. & Bloom, S. R. (1989) Production of endothelin 1 by cultured bovine retinal endothelial cells and presence of endothelin receptors on associated pericytes. Diabetes 38, 1200–1202.

    PubMed  Google Scholar 

  • Tilton, R. G. (1991) Capillary pericytes: Perspectives and future trends. Journal of Electron Microscopy Technique 19, 327–344.

    PubMed  Google Scholar 

  • Tilton, R. G., Kilo, C., Williamson, J. R. & Murch, D. W. (1979) Differences in pericyte contractile function in rat cardiac and skeletal muscle microvasculatures. Microvascular Research 18, 336–352.

    PubMed  Google Scholar 

  • Voyta, J. C., Via, D. P., Butterfield, C. E. & Zetter, B. R. (1984) Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. Journal of Cell Biology 99, 2034–2040.

    PubMed  Google Scholar 

  • Wiederholt, M., Berweck, S. & Helbig, H. (1995) Electrophysiological properties of cultured retinal pericytes. Progress in Retinal and Eye Research 14, 437–451.

    Google Scholar 

  • Zhang, H. R. (1994) Scanning electron microscopic study of corrosion casts on retinal and choroidal angioarchitecture in man and animals. Progress in Retinal and Eye Research 13, 243–270.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandopadhyay, R., Orte, C., Lawrenson, J. et al. Contractile proteins in pericytes at the blood-brain and blood-retinal barriers. J Neurocytol 30, 35–44 (2001). https://doi.org/10.1023/A:1011965307612

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011965307612

Keywords

Navigation