Skip to main content
Log in

BBB Transport and P-glycoprotein Functionality Using MDR1A (-/-) and Wild-Type Mice. Total Brain Versus Microdialysis Concentration Profiles of Rhodamine-123

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The effect of P-glycoprotein (Pgp) on brain distribution using mdrla (-/-) mice was investigated.

Methods. Fluorescein (Flu) and FD-4 were used to check whether blood-brain barrier (BBB) integrity was maintained in mdrla (-/-) mice. The Pgp substrate rhodamine-123 (R123) was infused and total brain, blood and brain microdialysate concentrations in mdrla (-/-) mice and wild-type mice were compared.

Results. Maintenance of BBB integrity was indicated by equal total brain/blood ratios of Flu and FD-4 in both mice types. R123 concentrations in brain after i.v. infusion were about 4-fold higher in mdrla (-/-) than in wild-type mice (P < 0.05), without changes in blood levels. After microdialysis experiments the same results were found, excluding artifacts in the interpretation of Pgp functionality by the use of this technique. However the 4-fold ratio in brain was not reflected in corresponding microdialysates. No local differences of R123 in the brain were found. By the no-net-flux method in vivo recovery appeared to 4.6-fold lower in mdrla (-/-) mice compared with wild-type mice.

Conclusions. Pgp plays an important role in R123 distribution into the brain. Using intracerebral microdialysis, changes in in vivo recovery by the absence or inhibition of Pgp (or active efflux in general) need to be considered carefully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. N. Kartner, J. R. Riordan, and V. Ling. Cell surface P-glycoprotein associated with multidrug resistance in mammalian cells. Science 221:1285–1288 (1983).

    Google Scholar 

  2. A. H. Schinkel and P. Borst. Multidrug resistance mediated by P-glycoproteins. Semin. Cancer Biol. 2:213–226 (1991).

    Google Scholar 

  3. P. Gros, Y. Ben-Neriah, J. Croop, and D. E. Housman. Isolation and overexpression of a complementary DNA that confers multidrug resistance. Nature 323:728–731 (1986).

    Google Scholar 

  4. S. Hsu, L. Lothstein, and S. B. Horwitz. Differential overexpression of three mdr gene family members in multidrug-resistant J774.2 mouse cells. J. Biol. Chem. 246:12053–12062 (1989).

    Google Scholar 

  5. A. Devault and P. Gros. Two members of the mouse mdr gene family confer multidrug resistance with overlapping but distinct drug specificities. Mol. Cell. Biol. 10:1652–1663 (1990).

    Google Scholar 

  6. F. Thiebaut, T. Tsuruo, H. Hamada, M. M. Gottesman, I. Pastan, and M. C. Willingham. Cellular localization of the multidrug-resistant gene product P-glycoprotein in normal human tissues. Proc. Natl. Acad. Sci. USA 84:7735–7738 (1987).

    Google Scholar 

  7. B. Cordon-Cardo, J. P. O'Brien, D. Casals, L. Rittman-Grauer, J. L. Biedler, M. R. Melamed, and J. R. Bertino. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc. Natl. Acad. Sci. USA 86:695–689 (1989).

    Google Scholar 

  8. F. Thiebaut, T. Tsuruo, H. Hamada, M. M. Gottesman, I. Pastan, and M.C. Willingham. Immunohistochemical localization in normal tissue of different epitopes in multidrug transport protein P170: Evidence for localization in brain capillaries and crossreactivity of one antibody with a muscle protein. J. Histochem. Cytochem. 37:159–164 (1989).

    Google Scholar 

  9. I. Sugawara, H. Hirofumi, T. Tsuruo, and S. Mori. Specialized localization of P-glycoprotein recognized by MRK-16 monoclonal antibody in endothelial cells of the brain and the spinal cord. Jpn. J. Cancer Res. 81:727–730 (1990).

    Google Scholar 

  10. V. A. Levin. Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J. Med. Chem. 23:682–684 (1980).

    Google Scholar 

  11. N. H. Greig, T. T. Soncrant, H. U. Shetty, S. Momma, Q. Smith, and S. I. Rapoport. Brain uptake and anticancer activities of vincristine and vinblastine are restricted by their low cerebrovascular permeability and binding to plasma constituents in rat. Cancer Chemother. Pharmacol. 26:263–268 (1990).

    Google Scholar 

  12. J-S. Lee, M. Alvarez, C. Hose, A. Monks, M. Grever, A. T. Fojo, and S. E. Bates. Rhodamine efflux patterns predict P-glycoprotein substrates in the national cancer institute drug screen. Mol. Pharmacol. 46:627–638 (1994).

    Google Scholar 

  13. A. H. Schinkel, J. J. M. Smit, O. Van Tellingen, E. Wagenaar, L. Van Deemter, C. A. A. M. Mol, M. A. Van der Valk, E. C. Robanus-Maandag, H. P. J. Te Riele, A. J. M. Berns, and P. Borst. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77:491–502 (1994).

    Google Scholar 

  14. A. H. Schinkel, E. Wagenaar, L. Van Deemter, C. A. A. M. Mol, and P. Borst. Absence of the mdr1a P-glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J. Clin. Invest. 96:1698–1705 (1995).

    Google Scholar 

  15. T. Tatsuta, M. Naito, T. Oh-Hara, I. Sugawara, and T. Tsuruo. Functional involvement of P-glycoprotein in blood-brain barrier. J. Biol. Chem. 267:20383–20391 (1992).

    Google Scholar 

  16. A. Tsuji, T. Terasaki, Y. Takabatake, Y. Tenda, I. Tamai, T. Yamashima, S. Moritani, T. Tsuruo, and J. Yamashita. P-glycoprotein as the drug efflux pump in primary cultured bovine brain capillary endothelial cells. Life Sci. 51:1427–1437 (1992).

    Google Scholar 

  17. E. J. Hegman, H. C. Bauer, and R. S. Kerbel. Expression and functional activity of P-glycoprotein in cultured cerebral capillary endothelial cells. Cancer Res. 52:6969–6975 (1992).

    Google Scholar 

  18. K. Ueda, N. Okamura, M. Hirai, Y. Tanigawara, T. Saeki, N. Kioka, and R. Hori. Human P-glycoprotein transports cortisol, aldosterone, and dexamethasone, but not progesterone. J. Biol. Chem. 267:24248–24252 (1992).

    Google Scholar 

  19. M. Ichiwaka-Haraguchi, T. Sumizawa, A. Yoshimura, T. Furakawa, S. Hiramoto, M. Sugita, and S-I. Akayima. Progesterone and its metabolites: the potent inhibitors of the transporting activity of P-glycoprotein in the adrenal gland. Biochem. Biophys. Acta 996:201–208 (1993).

    Google Scholar 

  20. E. C. M. De Lange, M. Danhof, A. G. de Boer, and D. D. Breimer. Critical factors of intracerebral microdialysis as a technique to determine the pharmacokinetics of drugs in rat brain. Brain Res. 666:1–8 (1994).

    Google Scholar 

  21. E. C. M. De Lange, M. R. Bouw, J. W. Mandema, M. Danhof, A. G. de Boer, and D. D. Breimer. Application of intracerebral microdialysis to study regional distribution kinetics of drugs in rat brain. Br. J. Pharmacol. 116:2538–2544 (1995).

    Google Scholar 

  22. E. C. M. De Lange, J. D. de Vries, M. Danhof, A. G. de Boer, and D. D. Breimer. The use of intracerebral microdialysis for the determination of pharmacokinetic profiles of anticancer drugs in tumor-bearing rat brain. Pharm. Res. 12:1924–1931 (1995).

    Google Scholar 

  23. E. C. M. De Lange, M. B. Hesselink, M. Danhof, A. G. de Boer, and D. D. Breimer. The use of intracerebral microdialysis to determine changes in blood-brain barrier transport characteristics. Pharm. Res. 12:129–133 (1995).

    Google Scholar 

  24. E. C. M. De Lange, C. Zurcher, M. Danhof, A. G. de Boer, and D. D. Breimer. Repeated microdialysis perfusions: periprobe tissue reactions and BBB permeability. Brain Res. 702:261–265 (1995).

    Google Scholar 

  25. A. A. Neyfahk. The use of fluorescent dyes as molecular probes for the study of multidrug resistance. Exp. Cell Res. 174:168–176 (1988).

    Google Scholar 

  26. D. H. Kessel. Exploring multidrug resistance using Rhodamine-123. Cancer Comm. 1:142–149 (1989).

    Google Scholar 

  27. P. Lonnroth, P. A. Johnson, and U. Smith. A microdialysis method allowing characterization of intercellular water space in humans. Am. J. Physiol. 253:(Endocrinol. Metab. 16), E228–E231 (1987).

    Google Scholar 

  28. B. Moghaddam and B. S. Bunney. Ionic composition of microdialysis perfusing solution alters the pharmacological responsiveness and basal outflow of striatal dopamine. J. Neurochem. 53:652–654 (1989).

    Google Scholar 

  29. C. McCormick. The elementary statistics of calibration. In: D. McCormick and A. Roach. Measurement, statistics and computation analytical chemistry by open learning. John Wiley and Sons, Chichester, New York, Brisbane, Toronto, Singapore, 1987, p. 331–353.

    Google Scholar 

  30. S. I. Rapoport. Transport in cells and tissues. In: (ed) S. I. Rapoport, Blood-brain barrier in physiology and medicine, Raven Press, New York, 1976, p. 17–42.

    Google Scholar 

  31. J. B. M. M. Van Bree, A. G. de Boer, M. Danhof, L. A. van Ginsel, and D. D. Breimer. Characterization of an “in vitro” blood-brain barrier (BBB): Effects of molecular size and lipophilicity on cerebrovascular endothelial transport rates of drugs. J. Pharmacol. Exp. Ther. 247:1233–1239 (1988).

    Google Scholar 

  32. M. W. Nabors, M. D. Griffin, B. A. Zehnbauer, R. H. Hruban, P. C. Philips, S. A. Grossman, H. Brem, and O. M. Colvin. Multidrug resistance gene (MDR1) expression in human brain tumors. J. Neurosurg. 75:941–946 (1991).

    Google Scholar 

  33. A. Yoshimura, Y. Kuwazuri, T. Sumizawa, S-I. Ikeda, M. Ichiwaka, T. Usagawa, and S-I. Akiyama. Biosynthesis, processing and half-life of P-glycoprotein in a human multidrug-resistant KB cell. Biochem. Biophys. Acta 992:307–413 (1989).

    Google Scholar 

  34. S. McClean and T. H. Bridget. Evidence of post-translational regulation of P-glycoprotein associated with the expression of a distinctive multiple drug-resistant phenotype in chinese hamster ovary cells. Eur. J. Cancer 29A:2243–2248 (1993).

    Google Scholar 

  35. T. C. Chambers, E. M. McAvoy, J. W. Jacobs, and G. Eilon. Protein kinase C phosphorylates P-glycoprotein in multidrug resistant human KB carcinoma cells. J. Biol. Chem. 265:7679–7686 (1990).

    Google Scholar 

  36. S. E. Bates, J. S. Lee, B. Dickstein, M. Spolnar, and A. T. Fojo. Differential modulation of P-glycoprotein transport by protein kinase inhibition. Biochem. 7:9156–9164 (1993).

    Google Scholar 

  37. P. M. Bungay, P. F. Morrison, and R. L. Dedrick. Steady-state theory for quantitative microdialysis of solutes and water in vivo and in vitro. Life Sci. 46:105–119 (1990).

    Google Scholar 

  38. Q. Wang, H. Yang, D. W. Miller, and W. F. Elmquist. Effect of the P-glycoprotein inhibitor cyclosporin A, on the distribution of rhodamine-123 to the brain: An in vivo microdialysis study in freely moving rats. Biochem. Biophys. Res. Comm. 211:719–726 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Lange, E.C.M., de Bock, G., Schinkel, A.H. et al. BBB Transport and P-glycoprotein Functionality Using MDR1A (-/-) and Wild-Type Mice. Total Brain Versus Microdialysis Concentration Profiles of Rhodamine-123. Pharm Res 15, 1657–1665 (1998). https://doi.org/10.1023/A:1011988024295

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011988024295

Navigation