Skip to main content
Log in

Fifth-Generation Model for Corticosteroid Pharmacodynamics: Application to Steady-State Receptor Down-Regulation and Enzyme Induction Patterns During Seven-Day Continuous Infusion of Methylprednisolone in Rats

  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

A fifth-generation model for receptor/gene-mediated corticosteroid effects was proposed based on results from a 50 mg/kg IV bolus dose of methylprednisolone (MPL) in male adrenalectomized rats, and confirmed using data from other acute dosage regimens. Steady-state equations for receptor down-regulation and tyrosine aminotransferase (TAT) enzyme induction patterns were derived. Five groups of male Wistar rats (n=5/group) were subcutaneously implanted with Alzet mini-pumps primed to release saline or 0.05, 0.1, 0.2, and 0.3 mg/kg/hr of MPL for 7 days. Rats were sacrificed at the end of the infusion. Plasma MPL concentrations, blood lymphocyte counts, and hepatic cytosolic free receptor density, receptor mRNA, TAT mRNA, and TAT enzyme levels were quantitated. The pronounced steroid effects were evidenced by marked losses in body weights and changes in organ weights. All four treatments caused a dose-dependent reduction in hepatic receptor levels, which correlated with the induction of TAT mRNA and TAT enzyme levels. The 7 day receptor mRNA and free receptor density correlated well with the model predicted steady-state levels. However, the extent of enzyme induction was markedly higher than that predicted by the model suggesting that the usual receptor/gene-mediated effects observed upon single/intermittent dosing of MPL may be countered by alterations in other aspects of the system. A mean IC50 of 6.1 ng/mL was estimated for the immunosuppressive effects of methylprednisolone on blood lymphocytes. The extent and duration of steroid exposure play a critical role in mediating steroid effects and advanced PK/PD models provide unique insights into controlling factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. R. F. van Vollenhoven. Corticosteroids in rheumatic disease. Understanding their effects is key to their use. Postgrad. Med. 103:137–142(1998).

    Google Scholar 

  2. R. P. Kimberly. Treatment. Corticosteroids and anti-inflammatory drugs. Rheum. Dis. Clin. North Am. 14:203–221(1988).

    Google Scholar 

  3. H. A. Boushey. Effects of inhaled corticosteroids on the consequences of asthma. J. Allergy Clin Immunol. 102:S5–16 (1998).

    Google Scholar 

  4. W. J. Jusko. Receptor-mediated pharmacodynamics of corticosteroids. Prog. Clin. Biol. Res. 387:261–270(1994).

    Google Scholar 

  5. C. A. Dujovne and D. L. Azarnoff. Clinical complications of corticosteroid therapy. A selected review. Med. Clin. North Am. 57:1331–1342(1973).

    Google Scholar 

  6. D. B. Haughey and W. J. Jusko. Receptor-mediated methylprednisolone pharmacodynamics in rats: steroid-induced receptor down-regulation. J. Pharmacokinet. Biopharm. 20:333–355 (1992).

    Google Scholar 

  7. Z. X. Xu, Y. N. Sun, D. C. DuBois, R. R. Almon, and W. J. Jusko. Third-generation model for corticosteroid pharmacodynamics: roles of glucocorticoid receptor mRNA and tyrosine aminotransferase mRNA in rat liver. J. Pharmacokinet. Biopharm. 23:163–181 (1995).

    Google Scholar 

  8. Y. N. Sun, D. C. DuBois, R. R. Almon, and W. J. Jusko. Fourth-generation model for corticosteroid pharmacodynamics: a model for methylprednisolone effects on receptor_ gene-mediated glucocorticoid receptor down-regulation and tyrosine aminotransferase induction in rat liver. J. Pharmacokinet. Biopharm. 26:289–317(1998).

    Google Scholar 

  9. Y. N. Sun, D. C. DuBois, R. R. Almon, N. A. Pyszczynski, and W. J. Jusko. Dosedependence and repeated-dose studies for receptor_gene-mediated pharmacodynamics of methylprednisolone on glucocorticoid receptor down-regulation and tyrosine aminotransferase induction in rat liver. J. Pharmacokinet. Biopharm. 26:619–648(1998).

    Google Scholar 

  10. R. Shiman and D. W. Gray. Formation and fate of tyrosine. Intracellular partitioning of newly synthesized tyrosine in mammalian liver. J. Biol. Chem. 273:34760–34769. (1998).

    Google Scholar 

  11. J. M. Dhahbi, P. L. Mote, J. Wingo, J. B. Tillman, R. L. Walford, and S. R. Spindler. Calories and aging alter gene expression for gluconeogenic, glycolytic, and nitrogen-metabolizing enzymes. Am. J. Physiol. 277:E352–360. (1999).

    Google Scholar 

  12. B. I. Labow, W. W. Souba, and S. F. Abcouwer. Glutamine synthetase expression in muscle is regulated by transcriptional and posttranscriptional mechanisms. Am. J. Physiol. 276:E1136–1145. (1999).

    Google Scholar 

  13. B. I. Labow, S. F. Abcouwer, C. M. Lin, and W. W. Souba. Glutamine synthetase expression in rat lung is regulated by protein stability. Am. J. Physiol. 275:L877–886. (1998).

    Google Scholar 

  14. W. F. Ebling, S. J. Szefler, and W. J. Jusko. Methylprednisolone disposition in rabbits. Analysis, prodrug conversion, reversible metabolism, and comparison with man. Drug Metab. Dispos. 13:296–304. (1985).

    Google Scholar 

  15. F. D. Boudinot, R. D'Ambrosio, and W. J. Jusko. Receptor-mediated pharmacodynamics of prednisolone in the rat. J. Pharmacokinet. Biopharm. 14:469–493. (1986).

    Google Scholar 

  16. D. C. DuBois, R. R. Almon, and W. J. Jusko. Molar quantification of specific messenger ribonucleic acid expression in northern hybridization using cRNA standards. Anal. Biochem. 210:140–144. (1993).

    Google Scholar 

  17. D. C. DuBois, Z. X. Xu, L. McKay, R. R. Almon, N. Pyszcznski, and W. J. Jusko. Differential dynamics of receptor down-regulation and tyrosine aminotransferase induction following glucocorticoid treatment. J. Steroid Biochem. Mol. Biol. 54:237–243. (1995).

    Google Scholar 

  18. T. I. Diamondstone. Assay of tyrosine transaminase activity by conversion of p-hydroxyphenylpyruvate to p-hydroxybenzaldehye. Anal. Bichem. 16:395–401(1966).

    Google Scholar 

  19. O. M. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–272(1951).

    Google Scholar 

  20. R. H. Oakley and J. A. Cidlowski. Homologous down regulation of the glucocorticoid receptor: the molecular machinery. Crit. Reû. Eukaryot. Gene Expr. 3:63–88(1993).

    Google Scholar 

  21. J. A. Schlechte, B. H. Ginsberg, and B. M. Sherman. Regulation of the glucocorticoid receptor in human lymphocytes. J. Steroid Biochem. 16:69–74. (1982).

    Google Scholar 

  22. G. F. Shipman, C. D. Bloomfield, K. J. Gajl-Peczalska, A. U. Munck, and K. A. Smith. Glucocorticoids and lymphocytes. III. Effects of glucocorticoid administration on lymphocyte glucocorticoid receptors. Blood 61:1086–1090. (1983).

    Google Scholar 

  23. Y. Dong, L. Poellinger, J. A. Gustafsson, and S. Okret. Regulation of glucocorticoid receptor expression: Evidence for transcriptional and posttranslational mechanism. Mol. Endocrinol. 2:1256–1264(1988).

    Google Scholar 

  24. W. V. Vedeckis, M. Ali, and H. R. Allen. Regulation of glucocorticoid receptor protein and mRNA levels. Cancer Res. (Suppl.). 49:2295s–2320s(1989).

    Google Scholar 

  25. D. Z. D'Argenio and A. Schumitzky. ADAPT II User's Guide: Pharmacokinetic_Pharmacodynamic Systems Analysis Software. Biomedical Simulations Resource, Los Angeles, CA (1997).

  26. D. K. Granner, E. B. Thompson, and G. M. Tomkins. Dexamethasone phosphate-induced synthesis of tyrosine aminotransferase in hepatoma tissue culture cells. Studies of the early phases of induction and of the steroid requirement for maintenance of the induced rate of synthesis. J. Biol. Chem. 245:1472–1478(1970).

    Google Scholar 

  27. E. Schmid, W. Schmid, M. Jantzen, D. Mayer, B. Jastorff, and G. Schutz. Transcription activation of the tyrosine aminotransferase gene by glucocorticoids and cAMP in primary hepatocytes. Eur. J. Biochem. 165:499–506(1987).

    Google Scholar 

  28. T. Noguchi, M. Diesterhaft, and D. Granner. Dibutyryl cyclic AMP increases the amount of functional messenger RNA coding for tyrosine aminotransferase in rat liver. J. Biol. Chem. 253:1332–1335(1978).

    Google Scholar 

  29. S. Hashimoto, W. Schmid, and G. Schutz. Transcriptional activation of the rat liver tyrosine aminotransferase gene by cAMP. Proc. Natl. Acad. Sci. U.S.A. 81:6637–6641. (1984).

    Google Scholar 

  30. K. L. Lee, P. L. Darke, and F. T. Kenney. Role of coenzyme in aminotransferase turnover. J. Biol. Chem. 252:4958–4961(1977).

    Google Scholar 

  31. P. Hogger and P. Rohdewald. Glucocorticoid receptors and fluticasone propionate. Reû. Contemp. Pharmacother. 9:501–522(1998).

    Google Scholar 

  32. R. Djordjevic-Markovic, O. Radic, V. Jelic, M. Radojcic, V. Rapic-Otrin, S. Ruzdijic, M. Krstic-Demonacos, S. Kanazir, and D. Kanazir. Glucocorticoid receptors in ageing rats. Exp. Gerontol. 34:971–982. (1999).

    Google Scholar 

  33. C. M. Silva, F. E. Powell-Oliver, C. M. Jewell, M. Sar, V. E. Allgood, and J. A. Cidlowski. Regulation of the human glucocorticoid receptor by long-term and chronic treatment with glucocorticoid. Steroids 59:436–442(1994).

    Google Scholar 

  34. F. Svec and M. Rudis. Dissociation between the magnitude of nuclear binding and the biopotency of glucocorticoids. Endocrinology 111:699–702. (1982).

    Google Scholar 

  35. R. I. Salganik, N. P. Mertvetsov, and S. V. Argutinskaya. The patterns of RNA synthesis and induction of glycogenic enzymes in rat liver under continuous cortisol administration. J. Steroid Biochem. 3:791–797(1972).

    Google Scholar 

  36. R. Ramakrishnan, D. C. DuBois, R. R. Almon, N. A. Pyszczynski, and W. J. Jusko. Pharmacodynamics and pharmacogenomics of methylprednisolone during seven-day infusions in rats. J. Pharmacol Exp. Ther. 300:245–256(2002).

    Google Scholar 

  37. J. D. Baxter and P. H. Forsham. Tissue effects of glucocorticoids. Am. J. Med. 53:573–589 (1972).

    Google Scholar 

  38. M. Sparberg, A. Gottschalk, and J. B. Kirsner. Liver abscess complication regional enteritis: report of two cases. Gastroenterology 49:548–551(1965).

    Google Scholar 

  39. R. B. Hill. Production of fatty liver in the rat by cortisone. Proc. Soc. Exp. Biol. 114:766 (1963).

    Google Scholar 

  40. J. P. Jones, Jr., E. P. Engleman, and J. S. Najarian. Systemic fat embolism after renal homotransplantation and treatment with corticosteroids. N. Engl. J. Med. 273:1453–1458 (1965).

    Google Scholar 

  41. M. Alexandrova, D. Mascuchova, and P. Tatar. Comparison of the biopotency of corticosterone and dexamethasone acetate in glucocorticoid receptor down regulation in rat liver. J. Steroid Biochem. 32:531–535. (1989).

    Google Scholar 

  42. A. N. D'Agostino and M. Chiga. Cortisone myopathy in rabbits. A light and electron microscopic study. Neurology 16:257–263. (1966).

    Google Scholar 

  43. A. N. D'Agostino and M. Chiga. Morphologic changes in cardiac and skeletal muscle induced by corticosteroids. Ann. N.Y. Acad. Sci. 138:73–81(1966).

    Google Scholar 

  44. D. S. David, M. H. Grieco, and P. Cushman, Jr. Adrenal glucocorticoids after twenty years. A review of their clinically relevant consequences. J. Chronic Dis. 22:637–711(1970).

    Google Scholar 

  45. J. J. Christian. ACTH-induced renal glomerular disease in intact, adrenalectomized and castrated male mice. Proc. Soc. Exp. Biol. Med. 126:152–157(1967).

    Google Scholar 

  46. G. M. Ferron, N. A. Pyszczynski, and W. J. Jusko. Pharmacokinetic and pharmacoimmunodynamic interactions between prednisolone and sirolimus in adrenalectomized rats. J. Pharmacokinet. Biopharm. 27:1–21. (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramakrishnan, R., DuBois, D.C., Almon, R.R. et al. Fifth-Generation Model for Corticosteroid Pharmacodynamics: Application to Steady-State Receptor Down-Regulation and Enzyme Induction Patterns During Seven-Day Continuous Infusion of Methylprednisolone in Rats. J Pharmacokinet Pharmacodyn 29, 1–24 (2002). https://doi.org/10.1023/A:1015765201129

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015765201129

Navigation