Skip to main content
Log in

Long-Circulating Emulsions (Oil-in-Water) as Carriers for Lipophilic Drugs

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Rapid clearance of parenterally administered oil-in-water emulsions from blood by the reticuloendothelial system (RES), mainly macrophages of the liver and spleen, has been one of the major obstacles for delivering lipophilic drugs to cells other than those in the RES. The purpose of this study therefore is to overcome this problem and develop emulsions that will have prolonged blood circulation time.

Methods. A series of amphipathic polyethylene-glycol (PEG) derivatives have been included as co-emulsifier into emulsions composed of Castor oil and phosphatidylcholine. The effect of amphipathic PEG on reducing the RES uptake and prolonging the blood circulation of the emulsion particles has been tested in vivo using mice as an animal model.

Results. Inclusion of PEG derivatives such as Tween-80 or dioleoyl N-(monomethoxy-polyethyleneglycol succinyl)phosphotidylethanolamine (PEG-PE) into emulsions composed of Castor oil and phosphatidylcholine decreases the RES uptake and increases blood residence time of the emulsions. The activity of PEG derivatives in prolonging the circulation time of emulsions depends on the PEG chain length (PEG2000≥PEG5000>PEG1000, Tween-80) and the PEG density on emulsion surface.

Conclusions. Inclusion of amphipathic PEG as emulsifier into oil-in-water emulsions is a very effective method to prolong the blood half life of the emulsions. Emulsions with long circulating half life in blood should be very useful as a delivery vehicle for lipophilic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. J. E. O'Mullane, P. Artursson and E. Tomlinson. Biopharmaceutics of microparticulate drug carriers. Ann N. Y. Acad. Sci. 507:120–140 (1987).

    Google Scholar 

  2. G. Gregoriadis. Liposomes as Drug Carriers: Recent Trends and Progress. John Wiley & Sons, New York, 1988.

    Google Scholar 

  3. D. Papahadjopoulos. A new perspective on liposomes. J. Liposome Res. 2:iii–xviii (1992).

    Google Scholar 

  4. K. K. Matthay, T. D. Heath and D. Papahadjopoulos. Specific enhancement of drug delivery to AKR lymphoma by antibody-targeted small unilamellar vesicles. Cancer Res. 44:1880–1886 (1984).

    Google Scholar 

  5. P. Machy, J. Barbet and L. D. Leserman. Differential endocytosis of T and B lymphocyte surface molecules evaluated with antibody-bearing fluorescent liposomes containing methotrexate. Proc. Natl. Acad. Sci. USA. 79:4143–4152(1982).

    Google Scholar 

  6. J. Connor and L. Huang. pH-sensitive immunoliposomes as an efficient and target-specific carrier for antitumor drugs. Cancer Res. 46:3431–3435(1986).

    Google Scholar 

  7. D. Collins and L. Huang. Cytotoxicity of diphtheria toxin A fragment to toxin-resistant murine cells delivered by pH-sensitive immunoliposomes. Cancer Res. 47:735–739(1987).

    Google Scholar 

  8. M. C. Finkelstein and G. Weismann. Enzyme replacement via liposome variations in lipid compositions determines liposome integrity in biological fluid. Biochim. Biophys. Acta. 587:202–216 (1979).

    Google Scholar 

  9. J. P. Leonetti, P. Machy, G. Degols, B. Lebleu and L. Leserman. Antibody-targeted liposomes containing oligodeoxyribonucleotides complementary to viral RAN selectively inhibit viral replication. Proc. Natl. Acad. Sci. USA. 87:2448–2451(1990).

    Google Scholar 

  10. C. Y. Wang and L. Huang. pH-sensitive immunoliposomes mediated target-cell-specific delivery and controlled expression of a foreign gene in mouse. Proc. Natl. Acad. Sci. USA. 84:7851–7855 (1987).

    Google Scholar 

  11. J. Y. Legendre and F. Szoka Jr. Delivery of plasmid DNA into mammalian cell lines using pH-sensitive liposomes comparison with cationic liposomes. Pharm. Res. 9:1235–1242(1992).

    Google Scholar 

  12. P. K. Hansrani, S. S. Davis and M. J. Groves. The preparation and properties of sterile intravenous emulsions. J. Parenteral Sci. & Technol. 37:145–150(1983).

    Google Scholar 

  13. M. Singh and L. J. Ravin. Parenteral emulsions as drug carrier system. J. Parenteral Sci. & Technol. 40:34–41(1986).

    Google Scholar 

  14. G. Poste, C. Bucana, A. Raz, P. Bugelski, R. Kirsh and I. J. Fidler. Analysis of the fate of systematically administered liposomes and implications for their use in drug delivery. Cancer Res. 42:1412–1422(1982).

    Google Scholar 

  15. G. Kabalka, E. Buonocore, K. Hubner, T. Moss, N. Norley and L. Huang. Gadolinium-labeled liposomes: targeted MR contrast agents for the liver and spleen. Radiology. 163:255–258 (1987).

    Google Scholar 

  16. A. L. Klibanov, K. Maruyama, V. P. Torchilin and L. Huang. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 268:235–237 (1990).

    Google Scholar 

  17. B. Lundberg. Preparation of drug-carrier emulsions stablized with phosphatidylcholine-surfactant mixtures. J. Pharm. Sci. 83:72–75(1994).

    Google Scholar 

  18. D. Liu, A. Mori, and L. Huang. Role of liposome size and RES blockade in controlling biodistribution and tumor uptake of GM1-containing liposomes. Biochim. Biophys. Acta. 1104:95–101 (1992).

    Google Scholar 

  19. M. S. Wu, J. C. Robbins, R. L. Bugianesi, M. M. Ponpipom and T. Y. Shen. Modified in vivo behavior of liposomes containing synthetic glycolipids. Biochim. Biophys. Acta. 674:19–26 (1981).

    Google Scholar 

  20. D. Liu, A. Mori and L. Huang. Large liposomes containing ganglioside GM1 accumulate effectively in spleen. Biochim. Biophys. Acta. 1066:159–165(1991).

    Google Scholar 

  21. M. C. Woodle and D. D. Lasic. Sterically stabilized liposomes. Biochim. Biophys. Acta. 1113:171–199 (1992).

    Google Scholar 

  22. T. M. Allen, C. Hansen, F. Martin, C. Redemann and A. Yau-Young. Liposomes containing synthetic lipid derivatives of polyethyleneglycol show prolonged circulation half-lives in vivo. Biochim. Biophys. Acta. 1066:29–36(1991).

    Google Scholar 

  23. D. Papahadjopoulos, T. M. Allen, A. Gabizon, E. Mayhew, K. Mathay, S. K. Huang, S K. D. Lee, M. C. Woodle, D. D. Lasic, C. Redemane and F. J. Matrtin. Sterically stabilized liposomes: improvements in pharmacokinetics and anti-tumor therapeutic efficacy. Proc. Natl. Acad. Sci. USA. 88:11460–11464 (1991).

    Google Scholar 

  24. R. Gref, Y. Minamitake, M. T. Peracchia, V. Trubetskoy, V. Torchilin and R. Langer. Biodegradeble long-circulating polymeric nanospheres. Science 263:1600–1603 (1994).

    Google Scholar 

  25. S. E. Dunn, A. Brindley, S. S. Davis, M. C. Davies and L. Illum. Polystyrene-poly (ethylene glycol) (PS-PEG2000) particles as model system for site specific drug delivery. 2. the effect of PEG surface density on the in vitro cell interaction and in vivo biodistribution. Pharm. Res. 11:1016–1022 (1994).

    Google Scholar 

  26. V. P. Torchilin, V. G. Omelyanenko, M. I. Papisov, A. A. Bogdanov, Jr., V. S. Trubetskoy, J. N. Herron and C. A. Gentry. Poly(ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity. Biochim. Biophys. Acta. 1195:11–20 (1994).

    Google Scholar 

  27. J. J. Wheeler, K. F. Wong, S. M. Ansell, D. Masin and M. B. Bally. Polyethylene glycol modified phospholipids stabilized emulsions prepared from triacylglycerol. J. Pharm. Sci. 83: 1558–1564(1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, F., Liu, D. Long-Circulating Emulsions (Oil-in-Water) as Carriers for Lipophilic Drugs. Pharm Res 12, 1060–1064 (1995). https://doi.org/10.1023/A:1016274801930

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016274801930

Navigation