Skip to main content
Log in

Effects of the Inhibitors of Dynamics of Cytoskeletal Structures on the Development of Apoptosis Induced by the Tumor Necrosis Factor

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Changes in cytoskeletal structures have been investigated during apoptosis of epithelial HeLa cells induced by tumor necrosis factor-α (TNF-α). Shape and surface cell activity were investigated by time-lapse video microscopy, and changes of the cytoskeletal structure were studied by immune fluorescent microscopy. Addition of TNF-α to HeLa cell culture caused early disruption of the actin cytoskeleton and vinculin-containing focal contacts, keratin filaments, and microtubules. Rounding of cells, general blebbing, and nuclear fragmentation were observed at the terminal apoptotic stages. Actomyosin complex inhibitors, H7 and HA1077, suppressed blebbing (but not cell rounding) and activated the development of apoptosis. The latter suggests that in contrast to blebbing the general rounding does not depend on increased contractility of actomyosin cortex. These cytoskeletal inhibitors accelerated the development of apoptosis of HeLa cells and increased sensitivity of HeLa-Bcl-2 cells (transfected with DNA encoding antiapoptotic protein Bcl-2) to TNF-induced apoptosis. Damage of cytoskeletal structures significantly attenuated antiapoptotic activity of Bcl-2 in the HeLa-Bcl-2 cells. It is suggested that the stimulation of apoptosis by cytoskeletal inhibitors may be attributed to the altered distribution of cell organelles, especially, mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Kopnin, B. P. (2000) Biochemistry (Moscow), 65, 2-27.

    Google Scholar 

  2. Metcalfe, A., and Streuli, Ch. (1997) Bio Essays, 19, 711-720.

    Google Scholar 

  3. Mills, J. C., Stone, N. L., Erhardt, J., and Pittman, R. N. (1998) J. Cell Biol., 140, 627-636.

    Google Scholar 

  4. Pawlak, G., and Helfman, D. M. (2001) Curr. Opin. Genet. Devel., 11, 41-47.

    Google Scholar 

  5. Skulachev, V. P. (2001) Exp. Gerontol., 36, 995-1024.

    Google Scholar 

  6. Coleman, M. L., Sahai, E. A., Yeo, M., Bosch, M., Dewar, A., and Olson, M. F. (2001) Nature Cell Biol., 3, 339-345.

    Google Scholar 

  7. Leverrier, Y., and Ridley, A. J. (2001) Nature Cell Biol., 3, 91-93.

    Google Scholar 

  8. Sebbagh, M., Renvoilz, C., Hamelin, J., Riche, N., Bertoglio, J., and Breagd, J. (2001) Nature Cell Biol., 3, 346-352.

    Google Scholar 

  9. Chang, H. Y., and Yang, X. (2000) Microbiol. Mol. Biol. Rev., 821-846.

  10. Reed, J. C. (1994) J. Cell Biol., 124, 1-6.

    Google Scholar 

  11. Reed, J. C. (1997) Nature, 387, 773-776.

    Google Scholar 

  12. Reed, J. C. (1997) Adv. Pharmacol., 41, 501-532.

    Google Scholar 

  13. Rovensky, Y. A., Domnina, L. V., Ivanova, O. Y., and Vasiliev, J. M. (1999) J. Cell Sci., 112, 1273-1282.

    Google Scholar 

  14. Sidoti-de Fraisse, C., Rincheval, V., Risler, Y., Mignotte, B., and Vayssiere, J.-L. (1998) Oncogene, 17, 1639-1651.

    Google Scholar 

  15. Seto, M., Sasaki, Y., and Hidaka, H. (1991) Eur. J. Pharmacol., 195, 267-272.

    Google Scholar 

  16. Cici, S. S., Volberg, T., Bershadsky, A. D., Denisenco, N., and Geiger, B. (1994) J. Cell Sci., 107, 683-692.

    Google Scholar 

  17. Guelshtein, V. I., Tchypisheva, T. A., Ermilova, V. D., Litvinova, L. V., Troyanovsky, S. M., and Bannikov, G. A. (1988) Int. J. Cancer, 42, 147-153.

    Google Scholar 

  18. Bratton, S. B., and Cohen, G. M. (2001) Trends Pharmacol. Sci., 22, 306-315.

    Google Scholar 

  19. Stegh, A. H., Herrmann, H., Lampel, S., Weisenberger, D., Andra, K., Seper, M., Wiche, G., Krammer, P. H., and Peter, M. E. (2000) Mol. Cell Biol., 20, 5665-5679.

    Google Scholar 

  20. Packard, B. Z., Komoriya, A., Brots, T. M., and Henkart, P. A. (2001) Immunology, 167, 5061-5066.

    Google Scholar 

  21. Rubtsova, S. N., Kondratov, R. V., Kopnin, P. B., Chumakov, P. M., and Vasiliev, J. M. (1998) FEBS Lett., 430, 353-357.

    Google Scholar 

  22. Volbracht, C., Leist, M., and Nicotera, P. (1999) Mol. Med., 5, 477-489.

    Google Scholar 

  23. Spector, I., Shochet, N. R., Kashman, Y., and Groweiss, A. (1983) Science, 219, 493-495.

    Google Scholar 

  24. Spector, I., Shochet, N. R., Blasberger, D., and Kashman,Y. (1989) Cell. Motil. Cytoskeleton, 13, 127-144.

    Google Scholar 

  25. Constantini, P., Jacotot, E., Decaudin, D., and Kroemer, G. (2000) Nat. Cancer Inst., 92, 1042-1053.

    Google Scholar 

  26. Radionov, V. I., Gyoeva, F. K., Tanaka, E., Bershadsky, A. D., Vasiliev, J. M., and Gelfand, I. M. (1993) J. Cell. Biol., 123, 1811-1820.

    Google Scholar 

  27. De Vos, K., Goossens, V., Boone, E., Vezcammen, D., Vancompernoll, K., Vendenabeele, P., Haegeman, G., Fiers, W., and Grooten, J. (1998) J. Biol. Chem., 273, 9673-9680.

    Google Scholar 

  28. De Vos, K., Severin, F., van Herrewoghe, F., Gossens, V., Hyman, A., and Grooten, J. (2000) J. Cell Biol., 149, 1207-1214.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Domnina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domnina, L.V., Ivanova, O.Y., Cherniak, B.V. et al. Effects of the Inhibitors of Dynamics of Cytoskeletal Structures on the Development of Apoptosis Induced by the Tumor Necrosis Factor. Biochemistry (Moscow) 67, 737–746 (2002). https://doi.org/10.1023/A:1016336421582

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016336421582

Navigation