Skip to main content
Log in

Fourth-Generation Model for Corticosteroid Pharmacodynamics: A Model for Methylprednisolone Effects on Receptor/Gene-Mediated Glucocorticoid Receptor Down-Regulation and Tyrosine Aminotransferase Induction in Rat Liver

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

A fourth-generation pharmacokinetic/pharmacodynamic (PK/PD) model for receptor/genemediated effects of corticosteroids was developed. Male adrenalectomized Wistar rats received a 50 mg/kg iv bolus dose of methylprednisolone (MPL). Plasma concentrations of MPL, hepatic glucocorticoid receptor (GR) messenger RNA (mRNA) and GR density, tyrosine aminotransferase (TAT) mRNA, and TAT activity in liver were determined at various time points up to 72 hr after MPL dosing. Down-regulation of GR mRNA and GR density were observed: GR mRNA level declined to 45–50% of the baseline in 8–10 hr, and slowly returned to predose level in about 3 days; GR density fell to 0 soon after dosing and returned to the baseline in two phases. The first phase, occurring in the first 10 hr, entailed recovery from 0 to 30%. The second phase was parallel to the GR mRNA recovery phase. Two indirect response models were applied for GR mRNA dynamics regulated by activated steroid-receptor complex. A full PK/PD model for GR mRNA/GR down-regulation was proposed, including GR recycling theory. TAT mRNA began to increase at about 1.5 hr, reached the maximum at about 5.5 hr, and declined to the baseline at about 14 hr after MPL dosing. TAT induction followed a similar pattern with a delay of about 1–2 hr. A transcription compartment was applied as one of the cascade events leading to TAT mRNA and TAT induction. Pharmacodynamic parameters were obtained by fitting seven differential equations piecewise using the maximum likelihood method in the ADAPT II program. This model can describe GR down-regulation and the precursor/product relationship between TAT mRNA and TAT in receptor/gene-mediated corticosteroid effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. K. H. Lew and W. J. Jusko. Pharmacodynamic modeling for cortisol suppression from fluocortolone. Eur. J. Clin. Pharmacol. 45:581–583 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. L. E. Fisher, E. A. Ludwig, and W. J. Jusko. Pharmacoimmunodynamics of methylprednisolone: trafficking of helper-T lymphocytes. J. Pharmacokin. Biopharm. 20:319–331 (1992).

    Article  CAS  Google Scholar 

  3. M. A. Milad, E. A. Ludwig, A. Anne, E. Middleton Jr., and W. J. Jusko. Pharmacodynamic model for joint exogenous and endogenous corticosteroid suppression of lymphocyte trafficking. J. Pharmacokin. Biopharm. 22:469–480 (1994).

    Article  CAS  Google Scholar 

  4. J. A. Wald, D. E. Salazar, H. Cheng, and W. J. Jusko. Two-compartment basophil cell trafficking model for methylprednisolone pharmacodynamics. J. Pharmacokin. Biopharm. 19:521–536 (1991).

    Article  CAS  Google Scholar 

  5. K. H. Lew, E. A. Ludwig, M. A. Milad, K. Donovan, E. Middleton Jr., J. J. Ferry, and W. J. Jusko. Gender-based effect on methylprednisolone pharmacokinetics and pharmacodynamics. Clin. Pharmacol. Ther. 54:402–414 (1993).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. R. I. Scheinman, P. C. Cogswell, A. K. Lofquist, and A. S. Baldwin Jr. Roles of transcriptional activation of IκBα in mediation of immunosuppression by glucocorticoids. Science 270:283–286 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. N. Auphan, J. A. DiDonato, C. Rosette, A. Helmberg, and M. Karin. Immunosuppression by glucocorticoids: Inhibition of NF-κB activity through induction of IκB synthesis. Science 270:286–290 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. T. Seene. Turnover of skeletal muscle contractile proteins in glucocorticoid myopathy. J. Steroid Biochem. Biol. 50:1–4 (1994).

    Article  CAS  Google Scholar 

  9. P. J. Evans. The regulation of hepatic tyrosine aminotransferase. Biochim. Biophys. Acta 677:433–444 (1981).

    Article  CAS  PubMed  Google Scholar 

  10. M. Izawa, A. Yosida, S. Ichii. Dynamics of glucocorticosteroid receptor and induction of tyrosine aminotransferase in rat liver. Endocrinol Japan 29:209–218 (1982).

    Article  CAS  Google Scholar 

  11. A. I. Nichols and W. J. Jusko. Receptor mediated prednisolone pharmacodynamics in rat: Model verification using a dose-sparing regimen. J. Pharmacokin. Biopharm. 18:189–208 (1990).

    Article  CAS  Google Scholar 

  12. F. D. Boudinot, R. D'Ambrosio, and W. J. Jusko. Receptor-mediated pharmacodynamics of prednisolone in the rat. J. Pharmacokin. Biopharm. 14:469–493 (1986).

    Article  CAS  Google Scholar 

  13. A. I. Nichols, F. D. Boudinot, and W. J. Jusko. Second generation model for prednisolone pharmacodynamics in the rat. J. Pharmacokin. Biopharm. 17:209–227 (1989).

    Article  CAS  Google Scholar 

  14. D. B. Haughey and W. J. Jusko. Receptor-mediated methylprednisolone pharmacodynamics in rats: steroid-induced receptor down-regulation. J. Pharmacokin. Biopharm. 19:333–355 (1992).

    Article  Google Scholar 

  15. D. C. DuBois, R. R. Almon, and W. J. Jusko. Molar quantification of specific messenger ribonucleic acid expression in Northern hybridization using cRNA standards. Anal. Biochem. 210:140–144 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Z-X. Xu, Y-N. Sun, D. C. DuBois, R. R. Almon, and W. J. Jusko. Third-generation model for corticosteroid pharmacodynamics: Roles of glucocorticoid receptor mRNA and tyrosine aminotransferase mRNA in rat liver. J. Pharmacokin. Biopharm. 23:163–181 (1995).

    Article  CAS  Google Scholar 

  17. N. L. Dayneka, V. Garg, and W. J. Jusko. Comparison of four basic models of indirect pharmacodynamic responses. J. Pharmacokin. Biopharm. 21:457–478 (1993).

    Article  CAS  Google Scholar 

  18. R. M. Oakley and J. A. Cidlowski. Homologous down regulation of the glucocorticoid receptor: The molecular machinery. Crit. Rev. Eukary. Gen. Expr. 3:63–88 (1993).

    CAS  Google Scholar 

  19. D. W. Tingley. Evolutions: steroid-hormone receptor signaling. J. NIH Res. 8:81–88 (1996).

    Google Scholar 

  20. N. O. Vamvakopoulos. Tissue-specific expression of heat shock proteins 70 and 90: potential implication for differential sensitivity of tissues to glucocorticoids. Mol. Cell. Endocrinol. 98:49–54 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. E. V. Mishina, R. M. Straubinger, N. A. Pyszczynski, and W. J. Jusko. Enhancement of tissue delivery and receptor occupancy of methylprednisolone in rats by a liposomal formulation. Pharm. Res. 10:1402–1410 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. M. J. Czar, J. K. Owens-Grillo, K. D. Dittmar, K. A. Hutchison, A. M. Zacharek, K. L. Leach, M. R. Deibel Jr., and W. B. Pratt. Characterization of the protein-protein interactions determining the shock protein (hsp 90.hsp 70.hsp 56) heterocomplex. J. Biol. Chem. 269:11155–11161 (1994).

    CAS  PubMed  Google Scholar 

  23. E. Orti, L. M. Hu, and A. Munck. Kinetics of glucocorticoid receptor phosphorylation in intact cells. Evidence for hormone-induced hyperphosphorylation after activation and recycling of hyperphosphorylated receptors. J. Biol. Chem. 268:7779–7784 (1993).

    CAS  PubMed  Google Scholar 

  24. I. Segard-Maurel, K. Rajkowski, N. Jibard, G. Schweizer-Groyer, E-E. Baulieu, and F. Cadepond. Glucocorticoid receptor dimerization investigated by analysis of receptor binding to glucocorticosteroid responsive elements using a monomer-dimer equilibrium model. Biochemistry 35:1634–1642 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. A. J. Cooney, and S. Y. Tsai. Nuclear receptor-DNA interactions. In M-J. Tsai and B. W. O'Malley (eds.), Mechanism of Steroid Hormone Regulation of Gene Transcription, R. G. Landes, 1994, pp. 25–59.

  26. B. Lewin. Regulation of transcription: factors that activate the basal apparatus. In Genes, V, Oxford University Press, 1994, pp. 879–909.

  27. B. Lewin. Control at initiation: RNA polymerase-promoter interactions. In Genes V, Oxford University Press, 1994, pp. 377–411.

  28. B. Lewin. The assembly line for protein synthesis. In Genes V, Oxford University Press, 1994, pp. 163–195.

  29. Y. Dong, L. Poellinger, J-A. Gustafsson, and S. Okret. Regulation of glucocorticoid receptor expression: Evidence for transcriptional and posttranslational mechanism. Mol. Endocrinol. 2:1256–1264 (1988).

    Article  CAS  PubMed  Google Scholar 

  30. W. V. Vedeckis, M. Ali, and H. R. Allen. Regulation of glucocorticoid receptor protein and mRNA levels. Cancer Res. (Suppl.) 49:2295s–2320s (1989).

    CAS  PubMed  Google Scholar 

  31. P. Bernstein, S. W. Peltz, and J. Ross. The poly(A)—poly(A)-binding protein complex is a major determination of mRNA stability in vitro. Mol. Cell Biol. 9:659–670 (1989).

    CAS  PubMed Central  PubMed  Google Scholar 

  32. J. S. Malter. Identification of a AUUUA-specific messenger RNA binding protein. Science 246:664–666 (1989).

    Article  CAS  PubMed  Google Scholar 

  33. B. Z. Carter and J. S. Malter. Biology of disease. Regulation of mRNA stability and its relevance to disease. Lab. Invest. 65:610–621 (1991).

    CAS  PubMed  Google Scholar 

  34. A. Munck and N. J. Holbrook. Glucocorticoid-receptor complexes in rat thymus cells: Rapid kinetic behavior and a cyclic model. J. Biol. Chem. 259:820–831 (1984).

    CAS  PubMed  Google Scholar 

  35. W. F. Ebling, S. J. Szefler, and W. J. Jusko. Methylprednisolone disposition in rabbits: analysis, prodrug conversion, reversible metabolism and comparison with man. Drug Metab. Dispos. 13:296–304 (1985).

    CAS  PubMed  Google Scholar 

  36. O. M. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–272 (1951).

    CAS  PubMed  Google Scholar 

  37. J. M. Chirgwin, A. E. Przybyla, R. J. MacDonald, and W. J. Rutter. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–5299 (1979).

    Article  CAS  PubMed  Google Scholar 

  38. P. A. Kreig and D. A. Melton. In vitro RNA synthesis with SP6 RNA polymerase. Meth. Enzymol. 155:397–415 (1987).

    Article  Google Scholar 

  39. D. C. DuBois, Z-X. Xu, L. McKay, R. R. Almon, N. Pyszczynski, and W. J. Jusko. Differential dynamics of receptor down-regulation and tyrosine aminotransferase induction following glucocorticoid treatment. J. Steroid Biochem. Mol. Biol. 54:237–243 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. J. P. Northrop, M. Danielsen, and G. M. Ringold. Analysis of glucocorticoid unresponsive cell variants using a mouse glucocorticoid receptor complementary DNA clone. J. Biol. Chem. 261:11064–11070 (1986).

    CAS  PubMed  Google Scholar 

  41. T. I. Diamondstone. Assay of tyrosine aminotransferase activity by conversion of p-hydroxyphenylpyruvate to p-hydroxybenzaldehyde. Anal. Biochem. 16:395–401 (1966).

    Article  CAS  Google Scholar 

  42. L. Z. Benet and R. L. Galeazzi. Noncompartmental determination of the steady-state volume of distribution. J. Pharm. Sci. 68:1071–1074 (1979).

    Article  CAS  PubMed  Google Scholar 

  43. C. C. Peck, S. L. Beal, L. B. Sheiner, and A. I. Nichols. Extended least squares nonlinear regression: A possible solution to the “choice of weights” problem in analysis of individual pharmacokinetic data. J. Pharmacokin. Biopharm. 12:545–558 (1984).

    Article  CAS  Google Scholar 

  44. D. Z. D'Argenio and A. Schumitzky. ADAPT II Program Menu: Pharmacokinetic/Pharmacodynamic Systems Analysis. Biomedical Simulation Resource, Los Angeles, CA, 1997.

  45. G. P. Lewis, W. J. Jusko, C. W. Burke, L. Graves, and the Boston Collaborative Drug Surveillance Program, Prednisone side-effects and serum-protein level: A collaborative study. Lancet 2:778–781 (1971).

    Article  CAS  PubMed  Google Scholar 

  46. J. Q. Rose, A. M. Yurchak, and W. J. Jusko. Dose dependent pharmacokinetics of prednisone and prednisolone in man. J. Pharmacokin. Biopharm. 9:389–417 (1981).

    Article  CAS  Google Scholar 

  47. F. D. Boudinot and W. J. Jusko. Fluid shifts and other factors affecting plasma protein binding of prednisolone by equilibrium dialysis. J. Pharm. Sci. 73:774–780 (1984).

    Article  CAS  PubMed  Google Scholar 

  48. W. F. Ebling, R. L. Milsap, S. J. Szefler, and W. J. Jusko. 6α-methylprednisolone and 6α-methylprednisolone plasma protein binding in humans and rabbits. J. Pharm. Sci. 75:760–763 (1986).

    Article  CAS  PubMed  Google Scholar 

  49. D. B. Haughey. Dose-dependent pharmacokinetics and receptor-mediated pharmacodynamics of methylprednisolone in the rat. Ph.D. dissertation, SUNY at Buffalo, 1990.

  50. D. B. Haughey and W. J. Jusko. Reversible metabolism and nonlinear disposition of methylprednisolone in the rat. Pharm. Res. 6:S181 (1990). (Abstract.)

    Google Scholar 

  51. S. Okret, L. Poellinger, Y. Dong, and J-Å. Gustafsson. Down-regulation of glucocorticoid receptor mRNA by glucocorticoid hormones and recognition by the receptor of a specific binding sequence within a receptor cDNA clone. Proc. Natl. Acad. Sci. U.S. 83:5899–5903 (1986).

    Article  CAS  Google Scholar 

  52. W. R. McIntyre and H. H. Samuels. Triamcinolone acetonide regulates glucocorticoid-receptor levels by decreasing the half-life of the activated nuclear-receptor form. J. Biol. Chem. 260:418–427 (1985).

    CAS  PubMed  Google Scholar 

  53. K. L. Burnstein, C. M. Jewell, and J. A. Cidlowski. Human glucocorticoid receptor cDNA contains sequences sufficient for receptor down-regulation. J. Biol. Chem. 265:7284–7291 (1990).

    CAS  PubMed  Google Scholar 

  54. W. Hoeck, S. Rusconi, and B. Groner. Down-regulation and phosphorylation of glucocorticoid receptors in cultured cells. Investigations with a monospecific antiserum against a bacterially expressed receptor fragment. J. Biol. Chem. 264:14396–14402 (1989).

    CAS  PubMed  Google Scholar 

  55. J. L. Hargrove and F. H. Schmidt. The roles of mRNA and protein stability in gene expression. FASEB J. 3:2360–2370 (1989).

    CAS  PubMed  Google Scholar 

  56. E. W. Müllner and L. C. Kühn. Stem-loop in the 3′ untranslated region mediates iron-dependent regulation of transferrin receptor mRNA stability in the cytoplasm. Cell 53:815–825 (1988).

    Article  PubMed  Google Scholar 

  57. L. B. Sheiner, D. R. Stanski, S. Vozeh, R. D. Miller, and J. Ham. Simultaneous modeling of pharmacokinetics and pharmacodynamics: Application to d-tubocurarine. Clin. Pharmacol. Ther. 25:358–371 (1979).

    CAS  PubMed  Google Scholar 

  58. H. M. Westphal, G. Moldenhauer, and M. Beato. Monoclonal antibodies to the rat liver glucocorticoid receptor. EMBO J. 1:1467–1471 (1982).

    CAS  PubMed Central  PubMed  Google Scholar 

  59. J. J. Pink and V. C. Jordan. Models of estrogen receptor regulation by estrogens and antiestrogens in breast cancer cell lines. Cancer Res. 56:2321–2330 (1996).

    CAS  PubMed  Google Scholar 

  60. J. B. Levy, T. M. Seay, D. J. Tindall, and D. A. Husmann. The effects of androgen administration on phallic androgen receptor. J. Urol. 156:775–779 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, YN., DuBois, D.C., Almon, R.R. et al. Fourth-Generation Model for Corticosteroid Pharmacodynamics: A Model for Methylprednisolone Effects on Receptor/Gene-Mediated Glucocorticoid Receptor Down-Regulation and Tyrosine Aminotransferase Induction in Rat Liver. J Pharmacokinet Pharmacodyn 26, 289–317 (1998). https://doi.org/10.1023/A:1023233409550

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023233409550

Navigation