Skip to main content
Log in

Roles of ErbB-3 and ErbB-4 in the Physiology and Pathology of the Mammary Gland

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

ErbB-3 and ErbB-4 are the most recently discovered and least characterized of the class I tyrosine kinase receptors. ErbB-3 is noteworthy for its low tyrosine kinase activity, suggesting that it may function more as an adaptor in signaling than as a kinase. Heregulin serves as a ligand for both receptors. A primary mechanism of heregulin action involves heterodimerization of its targeted receptors with other members of the class I family to promote cross-phosphorylation and cellular responses. Betacellulin also acts as a ligand for ErbB-4 to stimulate its kinase activity in both homo- and hetero-dimers. A new ligand (ASGP-2) for ErbB-2 has been discovered which operates by an intramembrane mechanism and may be able to modulate external ligand-dependent ErbB-3 or ErbB-4 heterodimeric interactions with ErbB-2. Heterodimerization stimulated by the ligands is a key feature of mitogenic signaling in mammary epithelial cells and tumors. Characterization of the signaling pathways for these receptors is still incomplete, but phosphatidylinositol 3-kinase and SHC have been implicated. Heregulin synthesized by the mesenchyme has been implicated in mammary development, modulated by systemic hormones. Observations on cultured mammary cells and mammary tumors have suggested linkages of ErbB-3 and ErbB-4 to proliferation and differentiation, respectively, but further work is needed to establish their definitive roles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. D. Medina (1996). The mammary gland: A unique organ for the study of development and tumorigenesis. J. Mam. Gland Biol. Neoplasia 1:5–19.

    Google Scholar 

  2. Y. J. Topper and C. S. Freeman (1980). Multiple hormone interactions in the developmental biology of the mammary gland. Physiol. Rev. 60:1049–1106.

    Google Scholar 

  3. T. Oka, M. Yoshimura, S. Lavandero, K. Wada, and Y. Ohba (1991). Control of growth and differentiation of the mammary gland by growth factors. J. Dairy Sci. 74:2788–2800.

    Google Scholar 

  4. C. D. Roskelly and M. J. Bissell (1995). Dynamic reciprocity revisited: a continuous, bidirectional flow of information between cells and the extracellular matrix regulates mammary epithelial cell function. Biochem. Cell Biol. 73:391–397.

    Google Scholar 

  5. C. D. Roskelly, A. Srebow, and M. J. Bissell (1995). A hierarchy of ECM-mediated signaling regulates tissue-specific gene expression. Curr. Opin. Cell Biol. 7:736–747.

    Google Scholar 

  6. C. J. Wilde and W. L. Hurley (1996). Animal models for the study of milk secretion. J. Mam. Gland Biol. Neoplasia 1:123–134.

    Google Scholar 

  7. R. D. Cardiff (1996). The biology of mammary transgenes: Five rules. J. Mam. Gland Biol. Neoplasia 1:61–73.

    Google Scholar 

  8. W. G. Cance and E. T. Liu (1995). Protein kinases in human breast cancer. Breast Cancer Res. Treat. 35:105–114.

    Google Scholar 

  9. C. A. C. Carraway and K. L. Carraway (1996). Interactions of membrane receptors and cell signaling systems with the cytoskeleton. In J. E. Hesketh and I. F. Pryme, (eds.), Treatise on the Cytoskeleton, Vol. 2, JAI Press, Inc., Greenwich, Connecticut pp. 207–238.

    Google Scholar 

  10. H. S. Earp, T. L. Dawson, X. Li, and H. Yu (1995). Heterodimerization and functional interaction between EGF receptor family members: A new signaling paradigm with implications for breast cancer research. Breast Cancer Res. Treat. 35:115–132.

    Google Scholar 

  11. K. L. Carraway, III and L. C. Cantley (1994). A neu acquaintance for ErbB3 and ErbB4: A role for receptor heterodimerization in growth signaling. Cell 78:5–8.

    Google Scholar 

  12. M. H. Kraus, W. Issing, T. Miki, N. C. Popescu, and S. A. Aaronson (1989). Isolation and characterization of ERBB3, a third member of the ERBB/epidermal growth factor receptor family: Evidence for overexpression in a subset of human mammary tumors. Proc. Natl. Acad. Sci. U.S.A. 86:9193–9197.

    Google Scholar 

  13. G. D. Plowman, G. S. Whitney, M. G. Neubauer, J. M. Green, V. L. McDonald, G. J. Todaro, and M. Shoyab (1990). Molecular cloning and expression of an additional EGF receptor-related gene. Proc. Natl. Acad. Sci. U.S.A. 87:4905–4909.

    Google Scholar 

  14. G. D. Plowman, J.-M. Culouscou, G. S. Withney, J. M. Green, G. W. Carlton, L. Foy, M. G. Neubauer, and M. Shoyab (1993). Ligand-specific activation of HER4/p180erB4, a fourth member of the epidermal growth factor receptor family. Proc. Natl. Acad. Sci. U.S.A. 90:1746–1750.

    Google Scholar 

  15. E. Peles and Y. Yarden (1993). Neu and its ligands: From an oncogene to neural factors. BioEssays 15:815–824.

    Google Scholar 

  16. K. L. Carraway and C. A. C. Carraway (1995). Signaling, mitogenesis and the cytoskeleton: where the action is. BioEssays 17:171–175.

    Google Scholar 

  17. W. J. Gullick (1996). The c-erbB3/HER3 receptor in human cancer. Cancer Surv. 27:339–349.

    Google Scholar 

  18. P. M. Guy, J. V. Platko, L. C. Cantley, R. A. Cerione, and K. L. Carraway, III (1994). Insect cell-expressed p180erbB3 possesses an impaired tyrosine kinase activity. Proc. Natl. Acad. Sci. U.S.A. 91:8132–8136.

    Google Scholar 

  19. G. Carpenter and S. Cohen (1990). Epidermal growth factor. J. Biol. Chem. 265:7709–7712.

    Google Scholar 

  20. J. Schlessinger (1988). Signal transduction by allosteric receptor dimerization. Trends Biochem. Sci. 13:443–447.

    Google Scholar 

  21. J.-M. Culouscou, G. D. Plowman, G. W. Carlton, J. M. Green, and M. Shoyab (1993). Characterization of a breast cancer cell differentiation factor that specifically activates the HER4/p180erbB4 receptor. J. Biol. Chem. 268:18407–18410.

    Google Scholar 

  22. E. Peles, S. S. Bacus, R. A. Koski, H. S. Lu, D. Wen, S. G. Ogden, R. B. Levy, and Y. Yarden (1992). Isolation of the Neu/HER-2 stimulatory ligand: A 44 kd glycoprotein that induces differentiation of mammary tumor cells. Cell 69:205–216.

    Google Scholar 

  23. D. Wen, E. Peles, R. Cupples, S. V. Suggs, S. S. Bacus, Y. Luo, G. Trail, S. Hu, S. M. Silbiger, R. B. Levy, R. A. Koski, H.S. Lu, and Y. Yarden (1992). Neu differentiation factor-a transmembrane glycoprotein containing an EGF domain and an immunoglobulin homology unit. Cell 69:559–572.

    Google Scholar 

  24. W. E. Holmes, M. X. Sliwkowski, R. W. Akita, W. J. Henzel, J. Lee, J. W. Park, D. Yansura, N. Abadi, H. Raab, G. D. Lewis, H. M. Shepard, W.-K. Kuang, W. I. Wood, D. V. Goeddel, and R. L. Vandlen (1992). Identification of heregulin, a specific activator of p185(erbB2). Science 256:1205–1210.

    Google Scholar 

  25. E. Peles, R. Ben-Levy, E. Tzahar, N. Liu, D. Wen, and Y. Yarden (1993). Cell-type specific interaction of Neu differentiation factor (NDF/heregulin) with Neu/HER-2 suggests complex ligand-receptor relationships. EMBO J. 12:961–971.

    Google Scholar 

  26. G. D. Plowman, J. M. Green, J.-M. Culouscou, G. W. Carlton, V. M. Rothwell, and S. Buckley (1993). Heregulin induces tyrosine phosphorylation of HER4/p180erbB4. Nature 366:473–475.

    Google Scholar 

  27. W. C. Dougall, X. L. Qian, and M. I. Greene (1993). Interaction of Neu/p185 and EGF receptor tyrosine kinases implications for cellular transformation and tumor therapy. J. Cell. Biochem. 53:61–73.

    Google Scholar 

  28. D. J. Riese II, T. M. van Raaij, G. D. Plowman, G. C. Andrews, and D. F. Stern (1995). The cellular response to neuregulins is governed by complex interactions of the erbB receptor family. Mol. Cell. Biol. 15:5770–5776.

    Google Scholar 

  29. K. L. Carraway III, M. X. Sliwkowski, R. Akita, J. V. Platko, P. M. Guy, A. Nuijens, A. J. Diamonti, R. L. Vandlen, L. C. Cantley, and R. A. Cerione (1994). The erbB3 gene product is a receptor for heregulin. J. Biol. Chem. 269:14303–14306.

    Google Scholar 

  30. R. Pinkas-Karmarski, L. Soussan, H. Waterman, G. Levkowitz, I. Alroy, L. Klapper, S. Lavi, R. Seger, B. J. Ratzkin, M. Sela, and Y. Yarden (1996). Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J. 15:2452–2467.

    Google Scholar 

  31. M. X. Sliwkowski, G. Schaefer, R. W. Akita, J. A. Lofgren, V. D. Fitzpatrick, A. Nuijens, B. M. Fendly, R. A. Cerione, R. L. Vandlen, and K. L. Carraway, III (1994). Coexpression of erbB2 and erbB3 proteins reconstitutes a high affinity receptor for heregulin. J. Biol. Chem. 269:14661–14665.

    Google Scholar 

  32. E. Tzahar, G. Levkowitz, D. Karunagaran, L. Yi, E. Peles, S. Lavi, D. Chang, N. Liu, A. Yayon, D. Wen, and Y. Yarden (1994). ErbB-3 and ErbB-4 function as the respective low and high affinity receptors of all Neu differentiation factor heregulin isoforms. J. Biol. Chem. 269:25226–25233.

    Google Scholar 

  33. C. Wallasch, F. U. Weiss, G. Niederfellner, B. Jallal, W. Issing, and A. Ullrich (1994). Heregulin-dependent regulation of HER2/neu oncogenic signaling by heterodimerization with HER3. EMBO J. 14:4267–4275.

    Google Scholar 

  34. D. J. Riese II, Y. Bermingham, T. M. van Raaij, S. Buckley, G. D. Plowman, and D. F. Stern (1996). Betacellulin activates the epidermal growth factor receptor and erbB-4, and induces cellular response patterns distinct from those stimulated by epidermal growth factor or neuregulin-beta. Oncogene 12:345–353.

    Google Scholar 

  35. X. Chen, G. Levkowitz, E. Tzahar, D. Karunagaran, S. Lavi, N. Ben-Baruch, O. Leitner, B. J. Ratzkin, S. S. Bacus, and Y. Yarden (1996). An immunological approach reveals biological differences between the two NDF/heregulin receptors, ErbB-3 and ErbB-4. J. Biol. Chem. 271:7620–7629.

    Google Scholar 

  36. R. R. Beerli, D. Graus-Porta, K. Woods-Cock, X. Chen, Y. Yarden, and N. E. Hynes (1995). Neu differentiation factor activation of ErbB-3 and ErbB-4 is cell specific and displays a differential requirement for ErbB-2. Mol. Cell. Biol. 15:6496–6505.

    Google Scholar 

  37. D. Karunagaran, E. Tzahar, R. R. Beerli, X. Chen, D. Graus-Porta, B. J. Ratzkin, R. Seger, N. E. Hynes, and Y. Yarden (1996). ErbB-2 is a common auxiliary subunit of NDF and EGF receptors: implications for breast cancer. EMBO J. 15:254–264.

    Google Scholar 

  38. S. C. Harrison (1996). Peptide-surface association: The case of PDZ and PTB domains. Cell 86:341–343.

    Google Scholar 

  39. S. A. Prigent and W. J. Gullick (1994). Identification of c-erbB-3 binding sites for phosphatidylinositol 3′-kinase and SHC using a EGF receptor/c-erbB-3 chimera. EMBO J. 13:2831–2841.

    Google Scholar 

  40. P. Fedi, J. H. Pierce, P. P. Di Fiore, and M. H. Kraus (1994). Efficient coupling with phosphatidylinositol 3-kinase, but not phospholipase Cγ or GTPase-activating protein, distinguishes ErbB-3 signaling from that of other ErbB/EGFR family members. Mol. Cell. Biol. 14:492–500.

    Google Scholar 

  41. S. P. Soltoff, K. L. Carraway III, S. A. Prigent, W. G. Gullick, and L. C. Cantley (1994). ErbB3 is involved in activation of phosphatidylinositol 3-kinase by epidermal growth factor. Mol. Cell. Biol. 14:3550–3558.

    Google Scholar 

  42. K. L. Carraway, III, S. P. Soltoff, A. J. Diamonti, and L. C. Cantley (1995). Heregulin stimulates mitogenesis and phosphatidylinositol 3-kinase in mouse fibroblasts transfected with erbB2/neu and erbB3. J. Biol. Chem. 270:7111–7116.

    Google Scholar 

  43. M. Alimandi, A. Romano, M. C. Curia, R. Muraro, P. Fedi, S. A. Aronson, P. P. Di Fiore, and M. H. Kraus (1995). Cooperative signaling of ErbB3 and ErbB2 in neoplastic transformation and human mammary carcinomas. Oncogene 10:1813–1821.

    Google Scholar 

  44. M. A. Avila, J. A. Velasco, C. Cho, R. Lupu, D. Wen, and V. Notario (1995). Hyperactive autocrine loop mediated by a NDF-related factor in neoplastic hamster embryo fibroblasts expressing an activated cph oncogene. Oncogene 10:963–971.

    Google Scholar 

  45. B. D. Cohen, J. M. Green, L. Foy, and H. P. Fell (1996). HER4-mediated biological and biochemical properties in NIH 3T3 cells. Evidence for HER1-HER4 heterodimers. J. Biol. Chem. 271:4813–4818.

    Google Scholar 

  46. K. Zhang, J. Sun, N. Liu, D. Wen, D. Chang, A. Thomason, and S.K. Yoshinaga (1996). Transformation of NIH 3T3 cells by HER3 or HER4 receptors requires the presence of HER1 or HER2. J. Biol. Chem. 271:3884–3890.

    Google Scholar 

  47. D. C. Gamett, T. Greene, A. R. Wagreich, H.-H. Kim, J. G. Koland, and R. A. Cerione (1995). Heregulin-stimulated signaling in rat pheochromocytoma cells. Evidence for ErbB3 interactions with Neu/ErbB2 and p85. J. Biol. Chem. 270:19022–19027.

    Google Scholar 

  48. S. P. Soltoff and L. C. Cantley (1996). p120cbl is a cytosolic adapter protein that associates with phosphoinositide 3-kinase in response to epidermal growth factor in PC12 and other cells. J. Biol. Chem. 271:563–567.

    Google Scholar 

  49. J. N. Ihle (1996). STATs: Signal transducers and activators of transcription. Cell 84:331–334.

    Google Scholar 

  50. S. A. Prigent, T. S. Pillay, K. S. Ravichandran, and W. J. Gullick (1995). Binding of Shc to the NPXY motif is mediated by its N-terminal domain. J. Biol. Chem. 270:22097–22100.

    Google Scholar 

  51. J.-M. Culouscou, G. W. Carlton, and A. Aruffo (1995). HER4 receptor activation and phophorylation of Shc proteins by recombinant heregulin-Fc fusion proteins. J. Biol. Chem. 270:12857–12863.

    Google Scholar 

  52. D. Graus-Porta, R. R. Beerli, and N. E. Hynes (1995). Single-chain antibody-mediated intracellular retention of ErbB-2 impairs Neu differentiation factor and epidermal growth factor signaling. Mol. Cell. Biol. 15:1182–1191.

    Google Scholar 

  53. B. M. Marte, D. Graus-Porta, M. Jeschke, D. Fabbro, N. E. Hynes, and D. Taverna (1995). NDF/heregulin activates MAP kinase and p70/p85 S6 kinase during proliferation or differentiation of mammary epithelial cells. Oncogene 10:167–175.

    Google Scholar 

  54. T. Horan, J. Wen, T. Arakawa, N. Liu, D. Brankow, S. Hu, B. Ratzkin, and J. S. Philo (1995). Binding of Neu differentiation factor with the extracellular domain of Her2 and Her3. J. Biol. Chem. 270:24604–24608.

    Google Scholar 

  55. D. Wen, S. V. Suggs, D. Karunagaran, N. Liu, R. L. Cupples, Y. Luo, A. M. Janssen, N. Ben-Baruch, D. B. Trollinger, V. L. Jacobsen, S.-Y. Meng, H. S. Lu, S. Hu, D. Chang, W. Yang, D. Yanigahara, R. A. Koski, and Y. Yarden (1994). Structural and functional aspects of the multiplicity of Neu differentiation factors. Mol. Cell. Biol. 14:1909–1919.

    Google Scholar 

  56. M. Marikovsky, S. Lavi, R. Pinkas-Kramarski, D. Karunagaran, N. Liu, D. Wen, and Y. Yarden (1995). ErbB3 mediates differential mitogenic effects of NDF/heregulin isoforms on mouse keratinocytes. Oncogene 10:1403–1411.

    Google Scholar 

  57. M. Katoh, Y. Yazaki, T. Sugimura, and M. Terada (1993). c-erbB3 gene encodes secreted as well as transmembrane receptor tyrosine kinase. Biochem. Biophys. Res. Commun. 192:1189–1197.

    Google Scholar 

  58. J. Baulida, M. H. Kraus, M. Alimandi, P. P. di Fiore, and G. Carpenter (1996). All ErbB receptors other than the epidermal growth factor receptor are endocytosis impaired. J. Biol. Chem. 271:5251–5257.

    Google Scholar 

  59. K. L. Carraway, III, E. Rossi, P. M. Guy, D. Lorenzo, M. E. Carvajal, R. A. Cerione, C. A. C. Carraway, and K. L. Carraway. (Undated). An intramembrane ErbB2/Neu ligand expressed in a metastatic mammary tumor. (manuscript submitted).

  60. C. A. C. Carraway, M. E. Carvajal, Y. Li, and K. L. Carraway (1993). Association of p185neu with microfilaments via a large glycoprotein complex in mammary carcinoma microvilli. Evidence for a microfilament-associated signal transduction particle. J. Biol. Chem. 268:5582–5587.

    Google Scholar 

  61. M. A. Marchionni, A. D. J. Goodearl, M. S. Chen, O. Bermingham-McDonogh, C. Kirk, M. Hendricks, F. Danehy, D. Misumi, J. Sudhalter, K. Kobayashi, D. Wroblewski, C. Lynch, M. Baldassare, I. Hiles, J. B. Davis, J. J. Hsuan, N. F. Totty, M. Otsu, R. N. McBurney, M. D. Waterfield, P. Stroobant, and D. Gwynne (1993). Glial growth factors are alternatively spliced erbB2 ligands expressed in the nervous system. Nature 362:312–318.

    Google Scholar 

  62. D. L. Falls, K. M. Rosen, G. Corfas, W. S. Lane, and G. D. Fischbach (1993). ARIA, a protein that stimulates acetylcholine receptor synthesis, is a member of the Neu ligand family. Cell 72:801–815.

    Google Scholar 

  63. K. L. Carraway, III (1995). Involvement of the neuregulins and their receptors in cardiac and neural development. BioEssays 18:263–266.

    Google Scholar 

  64. R. Kramer, N. Bucay, D. J. Kane, L. E. Martin, J. E. Tarpley, and L. E. Theil (1996). Neuregulins with an Ig-like domain are essential for mouse myocardial and neuronal development. Proc. Natl. Acad. Sci. U.S.A. 93:4833–4838.

    Google Scholar 

  65. K. L. Carraway, III and S. J. Burden (1995). Neuregulins and their receptors. Curr. Opin. Neurobiol. 5:606–612.

    Google Scholar 

  66. N. M. Shah, M. A. Marchionni, I. Isaacs, P. Stroobant, and D. J. Anderson (1994). Glial growth factor restricts mammalian neural crest stem cells to a glial fate. Cell 77:349–360.

    Google Scholar 

  67. T. K. Morrisey, A. D. O. Levi, A. Nuijens, M. X. Sliwkowski, and R. P. Bunge (1995). Axon-induced mitogenesis of human Schwann cells involves heregulin and p185erbB2 Proc. Natl. Acad. Sci. U.S.A. 92:1431–1435.

    Google Scholar 

  68. N. Altiok, J.-L. Bessereau, and J.-P. Changeux (1995). ErbB3 and ErbB2/neu mediate the effect of heregulin on acetylcholine receptor gene expression in muscle: differential expression at the endplate. EMBO J. 14:4258–4266.

    Google Scholar 

  69. L. M. Moscoso, G. C. Chu, M. Gautam, P. G. Noakes, J. P. Merlie, and J. R. Sanes (1995). Synapse-associated expression of an acetylcholine receptor-inducing protein, ARIA/heregulin, and its putative receptors, ErbB2 and ErbB3, in developing mammalian muscle. Develop. Biol. 172:158–169.

    Google Scholar 

  70. J. A. Loeb and G. D. Fischbach (1995). ARIA can be released from extracellular matrix through cleavage of a heparin-binding domain. J. Cell Biol. 130:127–135.

    Google Scholar 

  71. Y. Yang, E. Spitzer, D. Meyer, M. Sachs, C. Niemann, G. Hartmann, K. M. Weidner, C. Birchmeier, and W. Birchmeier (1995). Sequential requirement of hepatocyte growth factor and neuregulin in the morphogenesis and differentiation of the mammary gland. J. Cell Biol. 131:215–226.

    Google Scholar 

  72. T. W. Grunt, M. Saceda, M. B. Martin, R. Lupu, E. Dittrich, G. Krupitza, H. Harant, H. Huber, and C. Dittrich (1995). Bidirectional interactions between the estrogen receptor and the c-erbB-2 signaling pathways: Heregulin inhibits estrogenic effects in breast cancer cells. Int. J. Cancer 63:560–567.

    Google Scholar 

  73. T. G. Ram, K. E. Kokeny, C. A. Dilts, and S. P. Ethier (1995). Mitogenic activity of Neu Differentiation Factor/heregulin mimics that of epidermal growth factor and insulin-like growth factor-I in human mammary epithelial cells. J. Cell. Physiol. 163:589–596.

    Google Scholar 

  74. T. G. Ram, C. A. Dilts, M. L. Dziubinski, L. J. Pierce, and S. P. Ethier (1996). Insulin-like growth factor and epidermal growth factor independence in human mammary carcinoma cells with c-erbB-2 gene amplification and progressively elevated levels of tyrosine-phosphorylated p185erbB2. Mol. Carcin. 15:227–238.

    Google Scholar 

  75. T. G. Ram and S. P. Ethier (1996). Phosphatidylinositol 3-kinase recruitment by p185erbB-2 and erbB-3 is potently induced by neu differentiation factor/heregulin during mitogenesis and is constitutively elevated in growth factor-independent breast carcinoma cells with c-erbB-2 gene amplification. Cell Growth Diff. 7:551–561.

    Google Scholar 

  76. N. E. Hynes and D. F. Stern (1995). The biology of erB-2/neu/HER-2 and its role in cancer. Biochim. Biophys. Acta 1198:165–184.

    Google Scholar 

  77. G. Gasparini, W. J. Gullick, S. Maluta, P. D. Palma, O. Caffo, E. Leonardi, P. Boracchi, F. Pozza, N. R. Lemoine, and P. Bevilacqua (1994). c-erbB-3 and c-erbB-2 protein expression in node-negative breast carcinoma-an immunocytochemical study. Eur. J. Cancer 30A:16–22.

    Google Scholar 

  78. N. R. Lemoine, D. M. Barnes, D. P. Hollywood, C. M. Hughes, P. Smith, E. Dublin, S. A. Prigent, W. J. Gullick, and H. C. Hurst (1992). Expression of the ERBB3 gene product in breast cancer. Br. J. Cancer 66:1116–1121.

    Google Scholar 

  79. S. S. Bacus, C. R. Zelnick, G. Plowman, and Y. Yarden (1994). Expression of the erbB-2 family of growth factor receptors and their ligands in breast cancers. Implications for tumor biology and clinical behavior. Am J. Clin. Pathol. 102:S13–S24.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carraway, K.L., Carraway, C.A.C. & Carraway, K.L. Roles of ErbB-3 and ErbB-4 in the Physiology and Pathology of the Mammary Gland. J Mammary Gland Biol Neoplasia 2, 187–198 (1997). https://doi.org/10.1023/A:1026360032602

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026360032602

Navigation