Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains

Abstract

The plasma membrane pits known as caveolae have been implicated both in cholesterol homeostasis and in signal transduction. CavDGV and CavKSY, two dominant-negative amino-terminal truncation mutants of caveolin, the major structural protein of caveolae, significantly inhibited caveola-mediated SV40 infection, and were assayed for effects on Ras function. We find that CavDGV completely blocked Raf activation mediated by H-Ras, but not that mediated by K-Ras. Strikingly, the inhibitory effect of CavDGV on H-Ras signalling was completely reversed by replenishing cell membranes with cholesterol and was mimicked by cyclodextrin treatment, which depletes membrane cholesterol. These results provide a crucial link between the cholesterol-trafficking role of caveolin and its postulated role in signal transduction through cholesterol-rich surface domains. They also provide direct evidence that H-Ras and K-Ras, which are targeted to the plasma membrane by different carboxy-terminal anchors, operate in functionally distinct microdomains of the plasma membrane.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 2: Caveolin mutants inhibit H-Ras- but not K-Ras-mediated Raf activation.
Figure 3: CavDGV suppresses serum-dependent growth.
Figure 4: Immunolocalization of Cav DGV with respect to caveolin and markers of endocytic compartments.
Figure 5: Localization of Cav DGV with respect to internalized markers by immunoelectron microscopy and immunofluorescence.
Figure 6: CavDGV does not prevent plasma membrane recruitment of Raf by Ras.
Figure 7: Cav DGV decreases the buoyant density of membranes containing caveolin and H-Ras.
Figure 8: H-Ras but not K-Ras function is sensitive to perturbations in membrane cholesterol.
Figure 1: Caveolin mutants inhibit SV40 infection.

Similar content being viewed by others

References

  1. Hancock, J. F., Magee, A. I., Childs, J. E. & Marshall, C. J. All ras proteins are polyisoprenylated but only some are palmitoylated. Cell 57, 1167–1177 ( 1989).

    Article  CAS  PubMed  Google Scholar 

  2. Hancock, J. F., Paterson, H. & Marshall, C. J. A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell 63, 133–139 ( 1990).

    Article  CAS  PubMed  Google Scholar 

  3. Resh, M. Myristylation and palmitylation of Src family members: the fats of the matter. Cell 76, 411–413 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  4. Wedegaertner, P. B., Wilson, P.T. & Bourne, H. R. Lipid modifications of trimeric G proteins. J. Biol. Chem. 270, 503–506 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Umanoff, H., Edelmann, W., Pellicer, A. & Kucherlapati, R. The murine N-Ras gene is not essential for growth and development. Proc. Natl Acad. Sci. USA 92, 1709– 1713 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Johnson, L. et al. K-Ras is an essential gene in the mouse with partial functional overlap with N-Ras. Genes Dev. 11, 2468– 2481 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bos, J. L. ras oncogenes in human cancer: a review. Cancer Res. 49, 4682–4689 (1989).

    CAS  PubMed  Google Scholar 

  8. Jones, M. K. & Jackson, J. H. Ras-GRF activates Ha-Ras, but not N-Ras or K-Ras 4B, protein in vivo. J. Biol. Chem. 273, 1782–1787 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Yan, J., Roy, S., Apolloni, A., Lane, A. & Hancock, J. F. Ras isoforms vary in their ability to activate Raf-1 and phosphoinositide 3-kinase. J. Biol. Chem. 273, 24052–24056 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Hamilton, M. & Wolfman, A. Ha-ras and N-Ras regulate MAPK activity by distinct mechanisms in vivo. Oncogene 16, 1417–1428 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Simons, K. & Ikonen, E. Functional rafts in membranes. Nature 387, 569–572 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  12. Brown, R. E. Sphingolipid organization in biomembranes: what physical studies of model membranes reveal. J. Cell Sci. 111, 1– 9 (1998).

    CAS  PubMed  Google Scholar 

  13. Parton, R. G. & Simons, K. Digging into caveolae. Science 269, 1398–1399 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  14. Anderson, R. G. The caveolae membrane system. Annu. Rev. Biochem. 67 , 199–225 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Murata, M. et al. VIP21/caveolin is a cholesterol-binding protein. Proc. Natl Acad. Sci. USA 92, 10339– 10343 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fielding, C. J. & Fielding, P. E. Intracellular cholesterol transport. J. Lipid Res. 38, 1503–1521 (1997).

    CAS  PubMed  Google Scholar 

  17. Hailstones, D., Sleer, L. S., Parton, R. G. & Stanley, K. K. Regulation of caveolin and caveolae by cholesterol in MDCK cells. J. Lipid Res. 39, 369–379 (1998).

    CAS  PubMed  Google Scholar 

  18. Fielding, C. J., Bist, A. & Fielding, P. E. Caveolin mRNA levels are up-regulated by free cholesterol and down-regulated by oxysterols in fibroblast monolayers. Proc. Natl Acad. Sci. USA 94, 3753–3758 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Smart, E. J., Ying, Y., Donzell, W. C. & Anderson, R. G. A role for caveolin in transport of cholesterol from endoplasmic reticulum to plasma membrane. J. Biol. Chem. 271, 29427– 29435 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Garver, W. S. et al. Altered expression of caveolin-1 and increased cholesterol in detergent insoluble membrane fractions from liver in mice with Niemann-Pick disease type C. Biochim. Biophys. Acta 1361, 272–280 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Okamoto, T., Schlegel, A., Scherer, P. E. & Lisanti, M. P. Caveolins, a family of scaffolding proteins for organizing “preassembled signalling complexes” at the plasma membrane. J. Biol. Chem. 273, 5419–5422 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  22. Liu, J., Oh, P., Horner, T., Rogers, R. A. & Schnitzer, J. E. Organized endothelial cell surface signal transduction in caveolae distinct from glycosylphosphatidylinositol-anchored protein microdomains . J. Biol. Chem. 272, 7211– 7222 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Liu, P., Ying, Y. & Anderson, R. G. Platelet-derived growth factor activates mitogen-activated protein kinase in isolated caveolae. Proc. Natl Acad. Sci. USA 94, 13666–13670 ( 1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Furuchi, T. & Anderson, R. G. W. Cholesterol depletion of caveolae causes hyperactivation of extracellular signal-related kinase (Erk) . J. Biol. Chem. 273, 21099– 21104 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Koleske, A. J., Baltimore, D. & Lisanti, M. P. Reduction of caveolin and caveolae in oncogenically transformed cells. Proc. Natl Acad. Sci. USA 92, 1381–1385 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Engelman, J. A. et al. Recombinant expression of caveolin-1 in oncogenically transformed cells abrogates anchorage-independent growth. J. Biol. Chem. 272, 16374–16381 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Galbiati, F. et al. Targeted downregulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44MAP kinase cascade. EMBO J. 17, 6633–6648 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Anderson, H. A., Chen, Y. & Norkin, L. C. Bound simian virus 40 translocates to caveolin-enriched membrane domains, and its entry is inhibited by drugs that selectively disrupt caveolae. Mol. Biol. Cell 7, 1825– 1834 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stang, E., Kartenbeck, J. & Parton, R. G. Major histocompatibility complex class I molecules mediate association of SV40 with caveolae. Mol. Biol. Cell 8, 47–57 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Roy, S. et al. 14-3-3 potentiates Ras dependent Raf-1 activation in vitro and in vivo. Mol. Cell. Biol. 18, 3947– 3955 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stokoe, D., Macdonald, S. G., Cadwallader, K., Symons, M. & Hancock, J. F. Activation of Raf as a result of recruitment to the plasma membrane. Science 264, 1463–1467 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Way, M. & Parton, R. G. M-caveolin, a muscle-specific caveolin-related protein. FEBS Lett. 376, 108–112 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Dupree, P., Parton, R. G., Raposo, G., Kurzchalia, T. V. & Simons, K. Caveolae and sorting in the trans-Golgi network of epithelial cells. EMBO J. 12, 1597–1605 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wilson, J. M. & Colton, T. L. Targeting of an intestinal apical endosomal protein to endosomes in nonpolarized cells. J. Cell Biol. 136, 319–330 ( 1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Porpaczy, Z., Tomasek, J. J. & Freeman, D. A. Internalized plasma membrane cholesterol passes through an endosome compartment that is distinct from the acid vesicle-lysosome compartment . Exp. Cell Res. 234, 217– 224 (1997).

    Article  Google Scholar 

  36. Iwabuchi, K., Handa, K. & Hakomori, S. Separation of “glycosphingolipid signalling domain” from caveolin-containing membrane fraction in mouse melanoma B16 cells and its role in cell adhesion coupled with signalling. J. Biol. Chem. 273, 33766–33773 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  37. Harder, T., Scheiffele, P., Verkade, P. & Simons, K. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell Biol. 141, 929– 942 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brown, D. The tyrosine kinase connection: how GPI-anchored proteins activate T cells . Curr. Opin. Immunol. 5, 349– 354 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Silvius, J. R. & l’Heureux, F. Fluorimetric evaluation of the affinities of isoprenylated peptides for lipid bilayers . Biochemistry 33, 3014– 3022 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Murray, D., Ben-Tal, N., Honig, B. & McLaughlin, S. Electrostatic interaction of myristoylated proteins with membranes:simple physics, complicated biology. Structure 5, 985– 989 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Cooper, M. K., Porter, J. A., Young, K. E. & Beachy, P. A. Teratogen-mediated inhibition of target tissue response to Shh signaling. Science 280, 603–1607 ( 1998).

    Article  Google Scholar 

  42. Hancock, J. F., Cadwallader, K., Paterson, H. & Marshall, C. J. A CAAX or a CAAL motif and a second signal are sufficient for plasma membrane targeting of ras proteins. EMBO J. 10, 4033 –4039 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Roy, S., Lane, A., Yan, J., McPherson, R. & Hancock, J. F. Activity of plasma membrane recruited Raf-1 is regulated by Ras via the Raf zinc finger. J. Biol. Chem. 272, 20139–20145 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Gruenberg, J., Griffiths, G. & Howell, K. E. Characterization of the early endosome and putative endocytic carrier vesicles in vivo and with an assay of vesicle function in vitro. J. Cell Biol. 108, 1301– 1316 (1989).

    Article  CAS  PubMed  Google Scholar 

  45. Mu, F.-T. et al. EEA-1, an early endosome-associated protein: EEA-1 is a conserved a-helical peripheral membrane protein flanked by “cysteine fingers” and contains a calmodulin-binding IQ motif. J. Biol. Chem. 270, 13503–13511 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Kobayashi, T., Stang, E., de Moerloose, P., Parton, R. G. & Gruenberg, J. A lipid antigen associated with the anti-phospholipid syndrome regulates endosome structure/function. Nature 392, 193–197 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  47. Parton, R. G., Way, M., Zorzi, N. & Stang, E. Caveolin-3 associates with developing T-tubules during muscle differentiation. J. Cell Biol. 136, 137–154 ( 1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ullrich, O., Reinsch, S., Urbe, S., Zerial, M. & Parton, R. G. Rab11 regulates recycling through the pericentriolar recycling endosome. J. Cell Biol. 135, 913 –924 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Song, S. K. et al. Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. J. Biol. Chem. 271, 9690–9697 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Luetterforst, R., Stang, E., Zorzi, N., Carozzi, A., Way, M., and Parton, R.G. Molecular Characterization of caveolin association with the Golgi complex; identification of a cis Golgi targeting domain in the caveolin molecule. J. Cell Biol. (in the press).

Download references

Acknowledgements

We thank D. James, J. Gruenberg, R. McPherson, and G. van Meer for discussions. We also thank M. Way, J. Gruenberg, V. Gerke, B. Hock-Toh, and T. Nilsson for providing antibodies and constructs, and N. Zorzi, A. Lane, and C. Allen for excellent technical assistance. This research was supported by grants from the National Health and Medical Research Council of Australia to R.G.P. and J.F.H. J.F.H. is also supported by the Royal Children"s Hospital Foundation, Queensland. The Centre for Molecular and Cell Biology is a Special Research Centre of the Australian Research Council.

Correspondence should be addressed to J.F.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Hancock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, S., Luetterforst, R., Harding, A. et al. Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nat Cell Biol 1, 98–105 (1999). https://doi.org/10.1038/10067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/10067

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing