Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role of cyclic GMP in the action of heat-stable enterotoxin of Escherichia coli

Abstract

ENTEROTOXIGENIC strains of Escherichia coli elaborate two enterotoxins, a heat-labile toxin (LT) and a heat-stable toxin (ST), which cause diarrhoeal disease in humans1; ST-producing E. coli cause diarrhoea in adult volunteers2 and have been associated with epidemic diarrhoea in a nursery for the newborn3 and with sporadic adult diarrhoea among North American tourists to Latin America4 and the Navajo people in Arizona5. LT-producing strains are identified by the ability of culture filtrates to cause fluid accumulation in rabbit ileal loops at 18 h (ref. 6) or by morphological alteration of Chinese hamster ovary (CHO) cells7 or of Y-l adrenal cells8. ST-producing strains are identified by the ability of culture filtrates to cause earlier fluid accumulation in rabbit ileal loops (peak accumulation at 6 h (ref. 6), or by fluid accumulation in the gut of the suckling mouse at 3 h (refs 9, 10). LT acts in a manner similar to cholera toxin (CT) by activating adenylate cyclase11. The mechanism of action of ST is unknown, however. Culture filtrates of a strain of E. coli that produced both LT and ST caused immediate net fluid secretion in canine jejunal segments without the 1-h delay characteristic of the response to CT12,13. In addition, culture filtrates caused an immediate increase in canine jejunal adenylate cyclase activity as measured by enzymatic generation of P32-cyclic AMP from P32-labelled ATP13, also in contrast to the delay in appearance of increased adenylate cyclase activity following exposure to CT12. The possibility that the early effect of ST was mediated by changes in cyclic nucleotide concentrations was investigated; culture filtrates of ST-producing strains of E. coli caused increased cyclic GMP concentrations in rabbit intestinal tissue and the cyclic GMP analogue 8BrcGMP mimicked ST in magnitude and time course of intestinal fluid accumulation in both rabbits and suckling mice.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sack, R. B. A. Rev. Microbiol. 29, 333–353 (1975).

    Article  CAS  Google Scholar 

  2. Levine, M. M. et al. Infect. Immun. 17, 78–82 (1977).

    Article  CAS  Google Scholar 

  3. Ryder, R. W. et al. N. Engl. J. Med. 295, 849–853 (1976).

    Article  CAS  Google Scholar 

  4. Merson, M. H. et al. N. Engl. J. Med. 294, 1299–1305 (1976).

    Article  CAS  Google Scholar 

  5. Hughes, J. M., Rouse, J. D., Barada, F. A. & Guerrant, R. L. Clin. Res. 25, 377A (1977).

    Google Scholar 

  6. Evans, D. G., Evans, D. J., Jr & Pierce, N. F. Infect. Immun. 7, 873–880 (1973).

    Article  CAS  Google Scholar 

  7. Guerrant, R. L., Brunton, L. L., Schnaitman, T. C., Rebhun, L. I. & Gilman, A. G. Infect. Immun. 10, 320–327 (1974).

    Article  ADS  CAS  Google Scholar 

  8. Donta, S. T., Moon, H. W. & Whipp, S. C. Science 183, 334–336 (1974).

    Article  ADS  CAS  Google Scholar 

  9. Dean, A. G., Ching Y-C, Williams, R. G. & Harden, L. B. J. infect. Dis. 125, 407–411 (1972).

    Article  CAS  Google Scholar 

  10. Giannella, R. A. Infect. Immun. 14, 95–99 (1976).

    Article  CAS  Google Scholar 

  11. Gill, D. M., Evans, D. J., Jr & Evans, D. G. J. infect. Dis. 133, S103–S107 (1976).

    Article  Google Scholar 

  12. Guerrant, R. L., Chen, L. C. & Sharp, G. W. G. J. infect. Dis. 125, 377–381 (1972).

    Article  CAS  Google Scholar 

  13. Guerrant, R. L. et al. J. clin. Invest. 52, 1707–1714 (1973).

    Article  CAS  Google Scholar 

  14. Guerrant, R. L., Moore, R. A., Kirschenfeld, P. M. & Sande, M. A. N. Engl. J. Med. 293, 567–573 (1975).

    Article  CAS  Google Scholar 

  15. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. J. biol. Chem. 193, 265–275 (1951).

    CAS  Google Scholar 

  16. Steiner, A. L., Parker, C. W. & Kipnis, D. M. J. biol. chem. 247, 1106–1113 (1972).

    CAS  PubMed  Google Scholar 

  17. Katsuki, S. & Murad, F. Molec. Pharmac. 13, 330–341 (1977).

    CAS  Google Scholar 

  18. Murad, F., Manganiello, V. & Vaughan, M. J. biol. Chem. 245, 3352–3360 (1970).

    CAS  PubMed  Google Scholar 

  19. Murad, F. & Kimura, H. Biochim. biophys. Acta 343, 275–286 (1974).

    Article  CAS  Google Scholar 

  20. Krishna, G., Weiss, B. & Brodie, B. B. J. Pharmac. exp. Ther. 163, 379–385 (1968).

    CAS  Google Scholar 

  21. Mittal, C. K. & Murad, F. J. biol. Chem. 252, 3136–3140 (1977).

    CAS  PubMed  Google Scholar 

  22. Bourgoignie, J., Guggenheim, S., Kipnis, D. M. & Klahr, S. Science 165, 1362–1363 (1969).

    Article  ADS  CAS  Google Scholar 

  23. Brasitus, T. A., Field, M. & Kimberg, D. V. Am. J. Physiol. 231, 275–282, (1976).

    Article  CAS  Google Scholar 

  24. Sheerin, H. E. & Field, M. Am. J. Physiol. 232(2). E210–E215 (1977).

    CAS  PubMed  Google Scholar 

  25. Kapoor, C. L. & Krishna, G. Science 196, 1003–1005 (1977).

    Article  ADS  CAS  Google Scholar 

  26. Ong, S-H., Whitley, T. H., Stowe, N. W. & Steiner, A. L. Proc. natn. Acad. Sci. U.S.A. 72, 2022–2026 (1975).

    Article  ADS  CAS  Google Scholar 

  27. Kimura, H. & Murad, F. Life Sci. 17, 837–844 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HUGHES, J., MURAD, F., CHANG, B. et al. Role of cyclic GMP in the action of heat-stable enterotoxin of Escherichia coli. Nature 271, 755–756 (1978). https://doi.org/10.1038/271755a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/271755a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing