Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dopaminergic nerve endings visualised by high-resolution autoradiography in adult rat neostriatum

Abstract

Nerve cells containing dopamine (DA), noradrenaline (NA) or serotonin possess powerful physiological mechanisms for the reuptake and storage of their own transmitter. Monoaminergic neurones may therefore be visualised by high-resolution autoradiography1, provided that tritiated biogenic amines are retained in their sites of uptake and/or storage during suitable preparative histological procedures. Using this method, noradrenergic and serotonergic neuronal cell bodies and axon terminals have been specifically identified and examined in various parts of mammalian central nervous system2. However, although the nerve cell bodies of central dopaminergic neurones have been similarly investigated after in vivo labelling with either 3H-DA or 3H-NA3–7, the autoradiographic detection of dopaminergic nerve endings has remained problematic. Indeed, in previous studies after cerebroventricular infusion, super-fusion or local instillation of 3H-DA or 3H-NA, light and electron microscope autoradiographs of neostriatum, the brain region richest in dopaminergic nerve endings, failed to exhibit the small clusters of silver grains typical of monoamine-labelled axonal varicosities8–10. This suggested tracer displacement during histological processing, so we tested, after intraventricular administration of 3H-DA, a technique of tissue preparation developed in our laboratory for high-resolution autoradiographic visualisation of deoxyglucose-6-phosphate, a diffusible, water-soluble, unbound substrate11. We report here that the rapid successive vascular perfusion of both a glutaraldehyde primary fixative and osmium tetroxide postfixative, which may be followed by dehydration and resin-embedding also carried out by perfusion, maintains a sufficient amount of 3H-DA in situ to ensure light and electron microscopic identification of DA axon terminals in rat brain12.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wolfe, D. E., Potter, L. T., Richardson, K. C. & Axelrod, J. Science 138, 440–442 (1962).

    Article  ADS  CAS  Google Scholar 

  2. Calas, A. & Segu, L. J. Microscopic Biol Cell. 27, 249–252 (1976).

    Google Scholar 

  3. Descarries, L. & Droz, B. C. r. hebd. Séanc. Acad. Sci, Paris 266, 2480–2482 (1968).

    CAS  Google Scholar 

  4. Parizek, J., Hassler, R. & Bak, I. J. Z. Zellforsch. 115, 137–148 (1971).

    Article  Google Scholar 

  5. Sotelo, C. J. ultrastruct. Res. 36, 824–841 (1971).

    Article  CAS  Google Scholar 

  6. Scott, D. E., Sladek, J. R., Knigge, K. M., Krobisch-Dudley, G., Kent, D. L. & Sladek, C. D. Cell Tissue Res. 166, 461–473 (1976).

    Article  CAS  Google Scholar 

  7. Halász, N., Ljungdhal, Å. & Hökfelt, T. Brain Res. 154, 253–271 (1978).

    Article  Google Scholar 

  8. Aghajanian, G. K. & Bloom, F. E. J. Pharmac. exp. Ther. 156, 407–416 (1967).

    CAS  Google Scholar 

  9. Calas, A. et al. Brain Res. 118, 1–13 (1976).

    Article  CAS  Google Scholar 

  10. Arluison, M., Agid, Y. & Javoy, F. Neuroscience 3, 675–683 (1978).

    Article  CAS  Google Scholar 

  11. Des Rosiers, M. H. & Descarries, L. C. r. hebd. Séanc. Acad. Sci. Paris 287, 153–156 (1978).

    CAS  Google Scholar 

  12. Descarries, L., Bosler, O. & Des Rosiers, M. H. Neurosci. Lett. Suppl. 3, S 232 (1979).

    Google Scholar 

  13. Larra, F. & Droz, B. J. Microscopie 9, 845–880 (1970).

    CAS  Google Scholar 

  14. Descarries, L. & Droz, B. J. Cell Biol. 49, 385–399 (1970).

    Article  Google Scholar 

  15. Swanson, L. W. & Hartman, B. K. J. comp. Neurol. 163, 467–506 (1975).

    Article  CAS  Google Scholar 

  16. Glowinski, J. & Iversen, L. L. J. Neurochem. 13, 655–669 (1966).

    Article  CAS  Google Scholar 

  17. Hamberger, B. Acta physiol. scand. Suppl. 295, 1–56 (1967).

    Article  CAS  Google Scholar 

  18. Fuxe, K. & Ungerstedt, U. Histochemie 13, 16–28 (1968).

    Article  CAS  Google Scholar 

  19. Berger, B. & Glowinski, J. Brain Res. 147, 29–45 (1978).

    Article  CAS  Google Scholar 

  20. Ungerstedt, U. Eur. J. Pharmac. 5, 107–110 (1968).

    Article  CAS  Google Scholar 

  21. Andén, N.-E., Carlsson, A., Dahlström, A., Fuxe, K. & Hillarp, N.-Å. Life Sci 3, 523–530 (1964).

    Article  Google Scholar 

  22. Hökfelt, T. & Ungerstedt, U. Brain Res. 60, 269–297 (1973).

    Article  Google Scholar 

  23. Sotelo, C., Javoy, F., Agid, Y. & Glowinski, J. Brain Res. 58, 269–290 (1973).

    Article  CAS  Google Scholar 

  24. Agid, Y., Javoy, F., Glowinski, J., Bouvet, D. & Sotelo, C. Brain Res. 58, 291–301 (1973).

    Article  CAS  Google Scholar 

  25. Gutman, Y. & Weil-Malherbe, H. J. Neurochem. 14, 619–625 (1967).

    Article  CAS  Google Scholar 

  26. Fuxe, K. Acta physiol. scand. 64, Suppl. 247, 37–85 (1965).

    Article  Google Scholar 

  27. Einarsson, P., Hallman, H. & Jonnson, G. Med. Biol. 53, 15–24 (1975).

    CAS  PubMed  Google Scholar 

  28. Glowinski, J. & Iversen, L. L. Biochem. Pharmac. 15, 977–987 (1966).

    Article  CAS  Google Scholar 

  29. Philippu, A. & Heyd, W. Life Sci. 9, 361–373 (1970).

    Article  CAS  Google Scholar 

  30. Nose, T., Segawa, T. & Takagi, H. Japan J. Pharmac. 22, 867–869 (1972).

    Article  CAS  Google Scholar 

  31. Glowinski, J., Besson, M. J., Cheramy, A., Javoy, F. & Thierry, A. M. Rev. Neurol., Paris 127, 1–22 (1971).

    Google Scholar 

  32. Hökfelt, T. & Jonnson, G. Histochemie 16, 45–67 (1968).

    Article  Google Scholar 

  33. Hökfelt, T. Z. Zellforsch. 91, 1–74 (1968).

    Article  Google Scholar 

  34. Tennyson, V. M., Heikkila, R., Mytilineou, C., Côté, L. & Cohen, G. Brain Res. 82, 341–348 (1974).

    Article  CAS  Google Scholar 

  35. Arluison, M., Agid, Y. & Javoy, F. Neuroscience 3, 657–673 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Descarries, L., Bosler, O., Berthelet, F. et al. Dopaminergic nerve endings visualised by high-resolution autoradiography in adult rat neostriatum. Nature 284, 620–622 (1980). https://doi.org/10.1038/284620a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/284620a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing